Tagged: create Toggle Comment Threads | Keyboard Shortcuts

  • s 11:06 AM on 130216 Permalink | Reply
    Tags: , , create   

    The Crowd, The Critic And The Muse: A Book For Creators | Gungor 

     

    The Crowd, The Critic And The Muse: A Book For Creators | Gungor.

     
  • s 10:34 PM on 130215 Permalink | Reply
    Tags: , create,   

    film is not necessarily about WHAT you see – but it’s almost more an exercise in what you DON’T or CAN’T see. The best Directors and DPs show you only what is relevant to the story and never introduce a random shot or character if they can at all avoid it. I’ve always preached that a director or photographer should INCLUDE elements in a frame or shots that add to the story, and EXCLUDE elements or shots that detract from it.
     
  • s 10:07 PM on 130215 Permalink | Reply
    Tags: create,   

    Chunking : How the brain performs 

    ScienceDaily (June 12, 2012) — You pick up your cell phone and dial the new number of a friend. Ten numbers. One. Number. At. A. Time. Because you haven’t actually typed the number before, your brain handles each button press separately, as a sequence of distinct movements.

    After dialing the number a few more times, you find yourself typing it out as a series of three successive bursts of movement: the area code, the first three numbers, the last four numbers. Those three separate chunks allow you to type the number faster, and with greater precision. Eventually, dialed often enough, the number is stored in your brain as one chunk. Who needs speed dial?
    “You can think about a chunk as a rhythm,” said Nicholas Wymbs, a postdoctoral researcher in UC Santa Barbara’s Department of Psychological and Brain Sciences, and the lead author of a new study on motor chunking in the journal Neuron, published by Cell Press. “We highlight the two-part process that seems to occur when we are chunking. This is demonstrated by the rhythm we use when typing the phone number: rapid bursts of finger movements that are interspersed by pauses.”
    The rhythm is the human brain taking information and processing it in an efficient way, according to Wymbs. “On one level, the brain is going to try to divide up, or parse, long sequences of movement,” he said. “This parsing process functions to group or cluster movements in the most efficient way possible.”
    But it is also in our brain’s best interest to assemble single or short strings of movements into longer, integrated sequences so that a complex behavior can be made with as little effort as possible. “The motor system in the brain wants to output movement in the most computational, low-cost way as possible,” Wymbs said. “With this integrative process, it’s going to try to bind as many individual motor movements into a fluid, uniform movement as it possibly can.”
    The two processes are at odds with each other, and it’s how the brain reconciles this struggle during motor learning that intrigues Wymbs and the study’s other authors, including Scott Grafton, professor of psychology and director of the UCSB Brain Imaging Center. “What we are interested in is functional plasticity of the brain — how the brain changes when we learn actions, or motor sequences as we refer to them in this paper,” Wymbs said.
    The study was conducted using human subjects in the Magnetic Resonance Imaging (MRI) scanner in the Brain Imaging Center. The experiment involved three days of training with people performing and practicing three separate motor sequences for up to 200 trials each during the collection of functional MRI data. The subjects were all right-handed but they were asked to learn the sequences using the four fingers of their left hands. Participants practiced the sequences during the operation of the MRI scanner by tapping out responses with a button box that looked like a set of piano keys, with long, rectangular buttons.
    “People would see a static image shown on a video screen that detailed the sequence to be typed out,” Wymbs said. “They’re lying down inside the scanner and they see this image above their eyes. Interestingly, some people reported that the images looked like something out of (the video game) Guitar Hero, and, indeed, it does look a bit like guitar tablature. They would have to type out the ‘notes’ from left to right, as you normally would when reading music.
    “After practicing a sequence for 200 trials, they would get pretty good at it,” Wymbs added. “After awhile, the note patterns become familiar. At the start of the training, it would take someone about four and a half seconds to complete each sequence of 12 button presses. By the end of the experiment, the average participant could produce the same sequence in under three seconds.”
    The researchers’ goal was to look at which areas of the brain support the two-part process of chunking. “We feel that the motor process, or the concatenation process as we refer to it in the paper, tends to take over as you continue to practice and continue to learn the sequences,” Wymbs said. “That’s the one that’s tied to the motor output system — the thing that’s actually accomplishing what we set out to do.”
    With the experience of repeating a motor sequence, such as typing out a phone number, speaking, typing on a computer, or even texting, it becomes more automatic. “With automaticity comes the recruitment of core motor output regions,” Wymbs said.
    The scientists discovered that the putamen — a brain region that is critically important to movement — supports the concatenation process of motor chunking, with robust connectivity to parts of the brain that are intimately tied to the output of skilled motor behavior. On the other hand, they found that cortical regions in the left hemisphere respond more during the parsing process of motor chunking. “These regions have been linked to the manipulation of motor information, which is something that we probably do more of when we just begin to learn the sequences as chunks,” Wymbs said.
    “Initially, when you’re doing one of these 12-element sequences, you want to pause,” Wymbs added. “That would evoke more of the parsing mechanism. But then, over time, as you learn a sequence so that it becomes more automatic, and the concatenation process takes over and it wants to put all of these individual elements into a single fluid behavior.”
    According to Wymbs, the findings could have implications for the study and diagnosis of Parkinson’s and other diseases of the motor system that involve action. “We show here that there are two potentially competing systems that lead to the isolation of different systems that both work to allow us to process things efficiently when we’re learning,” Wymbs said.

    + http://www.brainpickings.org/index.php/2012/09/04/the-ravenous-brain-daniel-bor/

    “Generating interesting connections between disparate subjects is what makes art so fascinating to create and to view . . . we are forced to contemplate a new, higher pattern that binds lower ones together.”

    The process of combining more primitive pieces of information to create something more meaningful is a crucial aspect both of learning and of consciousness and is one of the defining features of human experience. Once we have reached adulthood, we have decades of intensive learning behind us, where the discovery of thousands of useful combinations of features, as well as combinations of combinations and so on, has collectively generated an amazingly rich, hierarchical model of the world. Inside us is also written a multitude of mini strategies about how to direct our attention in order to maximize further learning. We can allow our attention to roam anywhere around us and glean interesting new clues about any facet of our local environment, to compare and potentially add to our extensive internal model.

    Much of this capacity relies on our working memory — the temporary storage that holds these primitive pieces of information in order to make them available for further processing — and yet what’s most striking about our ability to build such an “amazingly rich” model of the world is that the limit of our working memory is hardly different from that of a monkey, even though the monkey’s brain is roughly one-fifteenth the size of ours: Experiment after experiment has shown that, on average, the human brain can hold 4 different items in its working memory, compared to 3 or 4 for the monkey.

    What makes the difference, Bor argues, is a concept called chunking, which allows us to hack the limits of our working memory — a kind of cognitive compression mechanism wherein we parse information into chunks that are more memorable and easier to process than the seemingly random bits of which they’re composed. Bor explains:

    In terms of grand purpose, chunking can be seen as a similar mechanism to attention: Both processes are concerned with compressing an unwieldy dataset into those small nuggets of meaning that are particularly salient. But while chunking is a marvelous complement to attention, chunking diverges from its counterpart in focusing on the compression of conscious data according to its inherent structure or the way it relates to our preexisting memories.

    To illustrate the power of chunking, Bor gives an astounding example of how one man was able to use this mental mechanism in greatly expanding the capacity of his working memory. The man, an undergraduate volunteer in a psychology experiment with an average IQ and memory capacity, took part in a simple experiment, in which the researchers read to him a sequence of random digits and asked him to say the digits back in the order he’d heard them. If he was correct, the next trial sequence would be one digit longer; if incorrect, one digit shorter. This standard test for verbal working memory had one twist — it took place over two years, where the young man did this task for an hour a day four days a week.

    Initially, he was able to remember roughly 7 numbers in the sequence — an average improvement over the 4-item limit that most people arrive at with a few simple and intuitive rehearsal strategies. But the young man was so bored with the experiment he decided to make it interesting for himself by doing his best to greatly improve his limit — which he did. By the end, some 20 months later, he was able to say back a sequence that was 80 digits long — or, as Bor puts it, “if 7 friends in turn rapidly told him their phone numbers, he could calmly wait until the last digit was spoken and then, from memory, key all 7 friends’ numbers into his phone’s contact list without error,” an achievement that would make Joshua Foer proud.

    But how, exactly, was an average person capable of such a superhuman feat? Bor sheds light:

    This volunteer happened to be a keen track runner, and so his first thought was to see certain number groups as running times, for instance, 3492 would be transformed into 3 minutes and 49.2 seconds, around the world-record time for running the mile. In other words, he was using his memory for well-known number sequences in athletics to prop up his working memory. This strategy worked very well, and he rapidly more than doubled his working memory capacity to nearly 20 digits. The next breakthrough some months later occurred when he realized he could combine each running time into a superstructure of 3 or 4 running times — and then group these superstructures together again. Interestingly, the number of holders he used never went above his initial capacity of just a handful of items. He just learned to cram more and more into each item in a pyramidal way, with digits linked together in 3s or 4s, and then those triplets or quadruplets of digits linked together as well in groups of 3, and so on. One item-space, one objet in working memory, started holding a single digit, but after 20 months of practice, could contain as much as 24 digits.

    This young man had, essentially, mastered exponential chunking. But, Bor points out, chunking isn’t useful only in helping us excel at seemingly meaningless tasks — it is integral to what makes us human:

    Although [chunking] can vastly increase the practical limits of working memory, it is not merely a faithful servant of working emory — instead it is the secret master of this online store, and the main purpose of consciousness.

    […]

    There are three straightforward sides to the chunking process — the search for chunks, the noticing and memorizing of those chunks, and the use of the chunks we’ve already built up. The main purpose of consciousness is to search for and discover these structured chunks of information within working memory, so that they can then be used efficiently and automatically, with minimal further input from consciousness.

    Perhaps what most distinguishes us humans from the rest of the animal kingdom is our ravenous desire to find structure in the information we pick up in the world. We cannot help actively searching for patterns — any hook in the data that will aid our performance and understanding. We constantly look for regularities in every facet of our lives, and there are few limits to what we can learn and improve on as we make these discoveries. We also develop strategies to further help us — strategies that themselves are forms of patterns that assist us in spotting other patterns, with one example being that amateur track runner developing tactics to link digits with running times in various races.

    But, echoing Richard Feynman’s eloquent lament on the subject, Bor points to a dark side of this hunger for patterns:

    One problematic corollary of this passion for patterns is that we are the most advanced species in how elaborately and extensively we can get things wrong. We often jump to conclusions — for instance, with astrology or religion. We are so keen to search for patterns, and so satisfied when we’ve found them, that we do not typically perform sufficient checks on our apparent insights.

    Still, our capacity for pattern-recognition, Bor argues, is the very source of human creativity. In fact, chunking and pattern-recognition offer evidence for the combinatorial nature of creativity, affirm Steve Jobs’s famous words that “creativity is just connecting things”, Mark Twain’s contention that “all ideas are second-hand”, and Nina Paley’s clever demonstration of how everything builds on what came before.

    The arts, too, generate their richness and some of their aesthetic appeal from patterns. Music is the most obvious sphere where structures are appealing — little phrases that are repeated, raised a key, or reversed can sound utterly beguiling. This musical beauty directly relates to the mathematical relation between notes and the overall logical regularities formed. Some composers, such as Bach, made this connection relatively explicit, at least in certain pieces, which are just as much mathematical and logical puzzles as beautiful musical works.

    But certainly patterns are just as important in the visual arts as in music. Generating interesting connections between disparate subjects is what makes art so fascinating to create and to view, precisely because we are forced to contemplate a new, higher pattern that binds lower ones together.

    What is true of creative skill, Bor argues, is also true of our highest intellectual contribution:

    Some of our greatest insights can be gleaned from moving up another level and noticing that certain patterns relate to others, which on first blush may appear entirely unconnected — spotting patterns of patterns, say (which is what analogies essentially are).

    Best of all, this system expands exponentially as it feeds on itself, like a muscle that grows stronger with each use:

    Consciousness and chunking allow us to turn the dull sludge of independent episodes in our lives into a shimmering, dense web, interlinked by all the myriad patterns we spot. It becomes a positive feedback loop, making the detection of new connections even easier, and creates a domain ripe for understanding how things actually work, of reaching that supremely powerful realm of discerning the mechanism of things. At the same time, our memory system becomes far more efficient, effective — and intelligent — than it could ever be without such refined methods to extract useful structure from raw data.

    Though some parts of The Ravenous Brain fringe on reductionism, Bor offers a stimulating lens on that always fascinating, often uncomfortable, inevitably alluring intersection of science and philosophy where our understanding of who we are resides.

    | Style : Background0, Font0, Size16 |

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel