Updates from February, 2013 Toggle Comment Threads | Keyboard Shortcuts

  • s 10:02 PM on 130215 Permalink | Reply
    Tags: , , , reference,   

    Reference Gear List – Wedding Video Shoot 

    GEAR:
    (3) Canon 5D Mark IIs
    (1) Canon 7D
    (1) GoPro Hero HD with waterproof housing
    GlideCam HD 2000
    5′ Kessler CineSlider with Oracle Motion Controller
    Igus Slider
    DIY Zipline
    Trees
    10′ Cobra Crane
    7″ Marshall Monitor
    Zacuto Z-Finder

    LENSES:
    35mm f/1.4L
    50mm f/1.2L
    85mm f/1.2L
    100mm Macro f/2.8L IS
    135mm f/2L
    16-35mm f/2.8L
    24-105mm f/4L IS
    70-200mm f/2.8L IS

     
  • s 9:55 PM on 130215 Permalink | Reply
    Tags: , , ,   

    Lenses : Cine vs Still 

    zoom

    – : http://matthewduclos.wordpress.com/2011/10/07/why-cinema-lenses-cost-so-much/

    Basically, everything boils down to two categories; usability and image quality. Obviously there are other factors involved such as production quantity, but that is usually tied into image quality.  Again, the question is, why is a cinema lens so much more expensive than a still photo lens? Cinema lens prices increase exponentially as the quality increases. For this demonstration, the top of the price spectrum will be represented by the Angenieux 24-290mm Optimo, and the bottom will be represented by the Nikon 18-55mm kit lens. Some would expect a few test shots with some text overlaid on them similar to that of most online lens reviews (mine included), but this really doesn’t show much beyond very basic image quality. To be honest, with todays manufacturing processes and techniques, the overall image quality in the center portion of each example lens, would probably be fairly similar. That doesn’t mean that the next big feature film is going to go out and shoot on a Nikon 18-55mm, but it also doesn’t mean that an 18-55mm Nikon isn’t going to produce good results. This is where the usability of each lens comes into play. For example, the entire core, focus, zoom, lock rings, and housing of the 24-290mm Optimo are machined from billet aluminum. The only part of the Optimo that isn’t made of high quality aluminum is the mount… Because that is made of stainless steel. Comparatively, the Nikon 18-55mm does in fact have an aluminum core, but everything else is plastic and brass, which can be good. It keeps weight and production cost down to a minimum, but is devastating to mechanical accuracy and precision. It doesn’t mean that the Optimo is the better lens for every situation. I wouldn’t want to lug a 25 lb. lens around Disneyland to snap pics of the family with Mickey Mouse. This leads me to the fine details such as stability and accuracy. Cinema lenses are not auto focus and traditionally require a trained focus puller to nail focus in any given shot. This isn’t done by peering through the viewfinder or pressing a button. It’s accomplished by taping out the distance to the subject and then dialing in the measured distance on the lens’ focus scale, which means those marks better be accurate or someone is losing their job. Focus mark accuracy isn’t really a concern on still photo lenses since 99% of users simply depress the shutter button half way and let the cameras auto focus do the work. The other 1% of users who focus manually for still photography, usually look through the viewfinder, pick a subject and adjust the focus ring until it looks sharp, still no need for focus mark accuracy. Nobody sets up their SLR, tapes out the distance, adjusts the lens to that distance and snaps away. It’s just to realistic.

    Speaking of focus, image shift and breathing are two more features that are critical in motion picture lenses, but not so much in still photo lenses. Let’s take our 18-55mm Nikon lens, put it on a camera, look through the monitor and rack focus or zoom. The whole image jumps around and loses focus because the components used inside the lens are very light-duty and left very loose to allow the tiny little drive motors to auto focus the lens for you. Comparatively, our 24-290mm Optimo is built with solid aluminum components that are precisely fitted and adjusted to keep everything as tight as possible. This keeps everything extremely smooth and accurate. If you adjust focus or zoom, the image should stay dead center and solid. This kind of performance requires extremely tight tolerances during machining and a very high level of care during assembly. Focusing with just about any still photo zoom lens will create a “breathing” effect that is simply an optical design characteristic. There is no adjustment for this flaw within the lens. It’s part of the optical-mechanical design and is taken into consideration during the development of a lens. Breathing is a bad thing in cinema because it really pulls the audience out of the scene. It changes the field of view of the lens and appears as though the lens is zooming in and out during even a small focus pull. This is why cinema lenses are designed not to breath and add substantially to the cost in order to do so. Tracking is somewhat related to breathing as it can really ruin ascot if not calibrate. Tracking is the movement of the image relative the the sensor/film, while zooming. Ideally, zoomed all the way in, an object in the very center of the image should stay in the exact same position on the sensor/film throughout the entire zoom range. Most cinema lenses include internal adjustment to calibrate tracking while still photo lenses aren’t concerned since you can simply re-compose before each shot.

    Another common characteristic of still photo zooms is their speed, or maximum aperture. Take our 18-55mm Nikon for example, again… The maximum aperture is f/3.5 which isn’t too bad. But as soon as you start to zoom, it looses light and stops all the way down to an f/5.6. Modern SLR cameras can easily compensate for this with automatic adjustments to exposure with the shutter speed or ISO. The 24-290mm is comparatively very fast at T2.8 and maintains its maximum aperture throughout it’s entire zoom range. Mostly because it’s an annoyance to think about adjusting setting from shot to shot and trying to match everything, but also because it would look horrible if the aperture started to close down in the middle of a shot, ruining the lighting, look and feel of a scene. Okay, there are plenty of still photo lenses that maintain a constant aperture. In fact, most of the major pro lenses will do this easily. But these are usually a fairly short zoom range. Do the numbers… Take the 14-24mm Nikkor, a great lens with a constant f/2.8 aperture, the zoom range is only 1.7x. The 24-70mm, a 2.9x. And the 70-200mm, a 2.8x zoom. Those three lenses are Nikons current crop of pro zoom lenses. The Angenieux 24-290mm maintains the same constant T2.8 aperture throughout it’s 12x zoom range. That’s almost unheard of in still photo lenses. These couple of characteristics can be lumped into the optical quality of the lens but also effect the usability. Another usability concern for motion picture lenses is their durability. Granted, if a cinema lens is dropped, it’s almost certain that it’s thrown completely out of whack and would require re-calibration, they are built like tanks. The same can not be said for our little 18-55mm Nikon friend. However, there are a lot of modern still photo lenses that are built to endure relentless usage and can really take a beating. All of these details are very minor on paper. It’s when you really get into the nitty gritty and use the lenses on a daily basis that you realize the differences can be substantial. Kind of like looking at two different cameras on paper. Each camera has a 3″ LCD screen, shutter speed, aperture, and ISO adjustments, an SD card slot, compact and portable, and includes a strap! One is a Leica, the other is a Kodak. Both are great cameras, but they are clearly meant for different purposes and clearly have a cost difference. The same logic applies to still photo lenses and cinema lenses. I like to think of it this way: Still photography offers a moment of interest. Cinema demands sustained attention.

    0 : http://www.fredmiranda.com/forum/topic/1104890

    Compared to stills lenses, cine lenses:
    have much more rugged mechanics, with thicker barrel walls, etc. Reliability is more important, and low weight less important, than for stills lenses. Greater mechanical stability is also needed for mounting accessories on the lenses.
    have standardised housing dimensions as far as reasonably possible. This allows accessories such as matte boxes and lens motors to fit all lenses in the range, and means the lenses within a range are easier to work with, since the position of the focus and iris gear is the same across all lenses.
    have toothed rings for attaching motors or other focusing and iris-control devices. On many modern cine lenses, these rings don’t move when the lens is focused.
    are made so that the image remains perfectly still when the focus ring is rotated, with no tilt, rotation, or shift from mechanical play.
    have stepless iris controls for smooth adjustments while filming.
    have more iris blades, for a rounder aperture when stopped down.
    have a much longer focus-ring rotation, with distance marks (witness marks) calibrated for each lens, and many more witness marks than stills lenses. This means you can measure the distance to a subject with a tape measure, and then focus precisely by scale for that distance. The distance marks are sometimes placed on interchangeable (or reversible) rings, with metric or imperial units (rather than both). So if the focus puller prefers to work in metres, he or she won’t be confused by irrelevant feet markings, and vice-versa.
    have larger and brighter markings (sometimes fluorescent) for better legibility on dim sets.
    have more precise colour matching across the lens range.
    are often faster, e.g. the Master Primes are T1.3.
    sometimes have less breathing. Really high-end lenses, like Master Primes, have practically no breathing (they were introduced with t-shirts saying “Breathless!” to make this point). The Master Primes achieve this with a dual floating-element design: the lens zooms while focusing to compensate for breathing. Mechanically, this is achieved with the use of machined cams rather than helicoid threads, which has another advantage: less variation in focus resistance in hot and cold temperatures.
    have typically less distortion, again to a greater extent at higher price brackets.
    have less vignetting at low f-stops.
    have greater resistance to flare, principally by sacrificing compactness while adding large stray-light baffles inside the barrel (and other light traps). Greater efforts are also made to eliminate the formation of ghost images, by adjusting the curvature and placement of the lens elements at the design stage. Obviously this has the knock-on effect of making aberration correction more difficult, which increases the design effort and manufacturing cost because the aberrations must nonetheless be corrected to a very high level.
    have service-friendly features such as easy-to-change front and rear elements, interchangeable mounts, back-focus adjustment features, etc.

    1 : http://matthewduclos.wordpress.com/2010/04/29/still-vs-cine-lenses/

    One might assume that a lens is a lens and you can simply adapt any lens to suit ones needs. This is usually a matter of changing or adapting the mount just so the square peg fits in the square hole. The fact is that still lenses and chine lenses are very different and can’t always be interchangeable. Still lenses are defined (in my opinion) as lenses that were designed and built for use with an SLR still camera whereas a cine lens would be one designed and built for use on a motion picture (movie) camera. I’ll go over why the two aren’t interchangeable and what can be done to reduce the differences between the two. Modern still lenses are designed for two things… Speed and ease of use.

    Nikon 85mm f/1.4 modified with focus gear for a follow focus and an 80mm front for common motion picture accessories. This particular lens also had its manual aperture de-clicked for smooth, seamless rotation.

    Manufacturers are always looking for a way to make the auto focus faster and simpler and over the past several decades this has been accomplished by making the focus components lighter and looser in order to make actuations easier for the tiny motors found in the lens or camera. The often plastic mechanics move in very loose, dry, and all together sloppy methods. The same can go for the zoom mechanics in a still zoom lens. This isn’t an attempt to make it easy for a motor, but just a fact of mass production at low cost. This isn’t a bad thing for a photographer taking still photos since the camera focuses nice and quick and then stops all adjustments when the photo is snapped at a fraction of a second. Another issue is that many new still lenses are abandoning manual aperture control rings for several reasons. The camera can control the aperture with no problem and it makes manufacturing cheaper. Lastly, still lenses continue to use focus distance marks, for the most part. But still lenses aren’t calibrated very well and the marks are often just a general guess rather than a reliable reference. Again, not a big deal if you are just depressing the shutter half-way to activate autofocus that doesn’t care what the distance is.All of these “issues” are only issues if you attempt to use still lenses to record motion. With the loose, easy mechanics, the image rendered by the lens on the film plane will jump around and jiggle if you try to adjust focus or zoom while recording. Nothing takes you out of a piece of art more than a jolt of motion similar to that of my moms video tapes of my school parade from 1990. Then there is the zoom. If you try to zoom or out while recording, forget it. Because still lenses aren’t calibrated and don’t hold focus, your picture will go from tac sharp to mush in a few millimeters. The lack of an aperture ring can be neglected since it’s still adjustable in the camera, but not always adjustable while recording. And even when a nice camera allows aperture adjustment while recording, you’re looking at adjustments in half or third stop increments that will simulate the exposure compensation that my phone exhibits.. Not pretty. There are a few other snags with still lenses that can be circumvented. The difference in standards is small, but detrimental. Still lenses don’t utilize external gears for use with a follow focus. Many people have turned to aftermarket add-on gears that simulate a focus or zoom gear. These can be garbage… Some of them use a block or clamp that interrupts the rotation and limits the user to a certain range.

    The closest alternative… Zeiss 85mm f/1.4 ZF, a prime lens that come so close to being a cine prime. With a solid aluminum housing and metal components it’s a great compromise.

    That just about sums up a majority of the modern still lenses for motion use but alas, there are a few remaining still lenses that are fairly well suited for motion. The first that comes to mind is the Zeiss ZF series lenses. They are completely manual lenses that feature a nice, solid metal construction that eliminates the common image shift and focus loss. And then there are older manual lenses from back when auto-focus was just a myth. But those are hard to find in good condition. That’s about as close you can get to a chine lens with a still lens. The major aspects that make chine lenses more expensive and higher quality are things like build faulty and materials. The tolerances used for designing and making a chine lens are much tighter than a still lens. The components in a chine lens are almost always metals and alloys. The mechanical designs have become extremely complex to avoid the dreaded image shift and to maintain proper calibration even with the severe abuse of modern Hollywood users. For example, a chine zoom will be a para-focal lens (maintains focus throughout zoom range) whereas still lenses can be vari-focal since you just refocus and snap the photo. This is important with a cine lens because the distances referenced on the focus scale are critical to the cinematographer and/or focus puller. These marks must be dead on every time or someone is going to have a heck of a time doing their job.

    A true motion picture lens, a Zeiss 85mm Ultra Prime T1.7 provides all the features one would need for shooting motion picture material. With a proper PL mount and superb design it stands tall against still lenses. However, its price tag stands out almost as much as its quality.

    2 : http://www.dvxuser.com/V6/content.php?103-Why-We-Need-Cinema-Lenses

    Color MatchingMany variables exist that effect the way a lens reproduces color. These variations are usually slight in nature, but important all the same. It is a well known fact that photography lenses are not designed to be color matched. Why would they? Color matching is another perfect example of why cinema and photography lens designs differ based upon how they are used. A photographer works with single independent images. A photograph is taken with one lens, it does not matter if other lenses in the photographers kit have unique characteristics. However, the cinematographer works with multiple shots woven and juxtaposed together to create an illusion of continuous time. When cutting between a medium-close up and an extreme close up, one can’t have the medium shot look neutral-cool and the close-up suddenly have a warm/pink tone. The inconsistency will either consciously or subconsciously weaken the illusion and possibly awake the viewer to the fact they are watching a contrived work of fiction. Cohesion of the image is incredibly important and the illusion must live on. Of course a modern day digital intermediate color-correction session can fix just about any lens color rendering inconsistency. Unfortunately such a process takes time and money. If one were to shoot an entire feature with mismatched lenses, there would be two choices: either release the film with bad color timing, or spend the money and effort to fix it in post. Color timing sessions can be well over hundreds per hour. There is enough work to be done in post. Matching lenses in post color correction when they could have simply been matched on set, is the last thing a production needs to spend money on.

    Chromatic Aberration
    Chromatic Aberration, also called CA, is the optical occurrence when a lens fails to bend all wavelengths if light equally. Light is made of many different wavelength frequencies that create the colors we see. A lens must capture incoming light then bend and straighten it to fall upon the film/digital sensor plane as straight as possible. When the optical elements within a lens bends the light, they can consequently act as a very mild prism and separate some wavelengths from others. These offset wavelengths will fall just slightly off from their counterparts resulting in a color fringing in the image. This is why aberration is a thin line of color. The color can change depending on which frequency the elements offset. As discussed above in the vignetting section, wide angle lenses have very extreme field of views. These lenses must take incoming light from very radical angles of incidence (thus more radical angles of refraction), and bend them toward the film plane without allowing any wavelengths to be slightly offset creating CA. Thus, chromatic aberrations are often found on the edges of wide angle lens frames.

    Front DiameterCinema lenses are often used in tandem with a mattebox system. Unlike photography lenses, which use screw on filters and built in lens hoods, cinema lenses use a mattebox to keep extraneous light from flaring the lens and to hold filters in front of the lens. By using a mattebox, a lens can be changed much faster without having to remove and reattach filters. However, when using a mattebox, it is extremely important to keep light from entering the mattebox from behind, thus either a bellows ring, doughnut ring, or clip-on back must fit perfectly around the lens front. By having a lens set with matched front diameters, the previously listed devices need not be switched out for different sizes, thus the lens change needs no additional actions. This saves time and reduces the amount of support gear needed.

    Weight
    Although rare and extremely difficult, some select cinema lens sets have many focal lengths with similar or the same weight. Usually these are lenses in the typical range of lengths, as very wide or telephoto lenses have lens designs which often make them heavier in nature. Having similarly weighted lenses can help when the camera is on steadi-cam, a remote servo-head, in handheld mode, or any other delicate mounting operation when balancing the camera is very important.

    Focus/Iris Ring Placement and Gears
    Cinema lenses are designed to have geared focus and iris rings placed at the same point on the barrel for all focal lengths. Doing so saves the camera assistant time when changing a lens, as the follow focus module nor any FIZ motors will require being adjusted after every lens change, thus further saving time on every lens change. Additionally, photography lenses typically do not have geared focus or iris rings. They are textured as to provide a nice grip for the photographers hand, but are not geared as cinema lenses are. Geared focus and iris rings are a must if to be used with a professional follow focus or remote follow focus system.

    http://1.bp.blogspot.com/-_mmc7X19Ny…tachment-6.jpg

    Zeiss Ultra Speeds is a great example of what is likely one of the most consistent lens sets in regards to physical build. Every lens between 16mm and 100mm is exactly 143mm in length, have a 93mm front diameter, and matching geared focus and iris ring positions. All lenses are consistent T-stop of T/1.9, and six focal lengths within the 24-85mm range have the exact same weight of 2.2 lbs.

    http://1.bp.blogspot.com/-nNfeWMG5Z_…tachment-7.jpg

    Zeiss ZE Canon lenses, a pretty nice photography lens set, is an example of how photography lenses are built for different types of use. Each lens is streamlined to be as small and light as possible, paying little attention to set uniformity. This particular lens set has different sized front diameters, different lengths, and dissimilar ungeared focus/iris ring placement.

    When a lens is changed, the 1st AC will likely have to adjust the mattebox placement on the rails, exchange the bellows ring/back plate/doughnut, slightly adjust the follow focus, and require a greater re-balance on steadicam. This is not a big deal, as it’s simply more work for the AC, but it can cost time over the course of a day. If lens changes are often, this can add up quite quickly, especially in on bigger films.

    If this wasn’t enough, many wonderful photography lenses no longer have an aperture ring! Manufacturers have moved the aperture ring from a physical and tactical ring on the lens to an electronic and internal function. For many lenses, the photographer must now use the camera to communicate with the lens and control the aperture electronically. On a cinema camera this immediately disqualifies the lens for use on most digital cinema cameras, as many do not have the means to communicate with a lens electronically. There are systems such as the Birger mount, which address some of these issues and does so quite well. If using internal aperture photography lenses on a cinema camera, this adapter seems to be the only sane option.

    http://4.bp.blogspot.com/-stp9hVpbnx…8-usm-lens.jpg

    Where is the aperture ring?!

    Focus Barrel Rotation & Distance Witness Markings
    A photographer does not need to worry about pulling focus smoothly or tracking a subject accurately at all times. A photographer must quickly find his subject and snap the photo. He can freely focus in front and behind the subject, narrowing in his focus. His hand is on the barrel and his eye through the lens. He cannot see the lens markings on the barrel, nor does he need to. He finds focus by eye and releases the shutter on an intuitive moment. The cinematographer cannot do this. Maybe if shooting docu-style, this can be a semi-acceptable method of focusing, but for all general purposes, one does not want to call attention to the camera, and focus hunting during a shot is an effective way of doing so. The cinematographer must accurately and discretely use focus to manipulate and direct the viewers eye. The camera assistant must follow the performances of the actor and/or the movement of the camera to keep the subject in focus. He cannot hunt for focus during a shot, and thus needs assistance from the lens in order to help him accurately track his target. This assistance comes in the form of many accurate witness markings on the barrel.

    Photography lenses typically have short focus throws. One can go from close to infinity focus in a simple twist of the wrist. This is helpful when needing to focus quickly on a moments notice, as many field photographers do. However, short focus throws make it difficult to gently track a subject and increases the possibility of overshooting a target. The focus distance markings on a photography lens are often few in number, only generally accurate, and are without actual witness mark lines.

    Modern cine lenses typically have a 300*+ barrel rotation. Cinema lenses are usually larger in size (for optical reasons) thus tend to have a long 300*+ rotation (300* rotation on a tiny lens can be less travel than a smaller rotation on a bigger girth lens). On high quality cinema lenses, each lens is custom engraved to ensure focus witness marks are as accurate as possible. Modern cinema lenses also have two focus scales, one for each side, so the camera assistant does not have to flip the lens in order to pull from the other side of the camera.

    Build Materials
    It can be argued whether photography or cinematography conditions are the hardest on equipment, (it’s cinematography btw) but there is little argument that cinema lenses are typically better built. Cinema lenses are built for the most rigorous of production demands. They are made from machined metal and are designed to operate from sub freezing temperatures to dangerously hot climates. They can be easily serviced, repaired, and modified. The most typical of cinema lens mounts, the PL and PV mount, are amongst the most strong, sturdy and temperature resistant designs.

    http://3.bp.blogspot.com/-GnSbeC3KDm…kes4primes.jpg

    Cooke S4 lenses are made from machined anodized aluminum built to operate in conditions
    from -13° to 131° fahrenheit. They are not threaded lens barrels, but instead use a cam system,
    which eliminates the need for lubrication, such as grease.

    Linear Iris in T-stops
    Cinema lenses do not have ‘clicked’ iris rings like many photography lenses, thus one can set the aperture to land at any value between stops. Most modern PL lenses have linear iris rings, with every third of a stop marked. Because cinema lenses are in T-stops, achieving precise and matched exposures with different lenses is as easy as setting the iris ring. Photography lenses, often have clicked iris rings, meaning they must settle on one stop or another. Trying to split a stop will result in the lens likely trying to settle one way or another. If the photography lens does not have a clicked aperture, it will likely be rated in f/stops and without sub-stop markings.

    T-stops Vs F-stops
    Cinema lenses are rated in t-stops, ‘t’ for ‘transmission’, instead of the familiar f-stops found on photography lenses. T-stops are values which represent the true amount of light passing through the lens. Each lens is tested and marked for their T-stop values. An F-stop is simply a formula. It calculates the amount of light that should pass through a lens based on the focal length divided by the entrance pupil. Thus it’s decently accurate except for one thing… it does not take into account the light lost from passing through the glass elements inside the lens! Thus there is always a varying degree of light loss from one lens to another. With F-stop lenses you are always playing within a margin of error.

    Matching Maximum Aperture & Iris Assembly
    Cinema lens sets are designed and built to have matching maximum apertures. This feature isn’t as important as it is helpful, but if a lens set does not have matching maximum apertures, it is the responsibility of the cinematographer to work within the least common denominator among his lens set, or he will find himself switching to a lens that cannot support the working exposure he has already set with his lights. However, the iris assembly is different and arguably more important to the image. When shooting semi-stopped down, on a long lens, and with shallow depth of field, the shape of the iris aperture can be defined in the out of focus elements commonly referred to as lens bokeh. Lenses with matching iris assemblies will provide matching out of focus bokeh shapes. Cooke S4’s and Cooke Panchro/i’s use the same iris assembly design, thus if you were to use them together, they would not only be color matched, but would produce the exact same bokeh renderings at matched apertures. Having a lens set where one lens has a triangular iris assembly, another hexagonal, another octagonal, and another with 12 blades, will result in very different bokeh shapes. If consistency is the goal, this could prove problematic.

    Lens Breathing
    When one changes the focus of a lens, the optical elements inside shift in concert to bend the incoming light from the corresponding distance to a focal point upon the sensor. When the optical elements inside the lens reposition themselves during the focus rack, they can slightly alter the field of view of a lens, which will appear similar to a very slow and mild zoom. This is called lens breathing. In photography, breathing is not important what-so-ever. Besides changing the composition by arguably negligible amounts, breathing is not seen in the image. To eliminate breathing, the lens design must be changed to account for the optical effect, thus eliminating breathing is not a priority of photography lens manufacturers.

    In cinema, tracking focus within a shot, or racking focus from one subject to another is a very common practice, thus cinema lenses take great strides to eliminate breathing. Not long ago, to eliminate breathing all together, Zeiss created a Dual-Floating Element design for their Master Primes. This design will be recognized at the 2012 Oscars with an Academy Award for Scientific and Technical Achievement.

    Barrel Extension
    As explained with lens breathing, when a lens changes focus or zooms, the optical elements inside adjust and shift. When designing lenses, it is often easier to allow the lens barrel to extend forward, in order to accommodate the shifting elements. Many photography lenses, when focused or zoomed, extend their barrel forward as the optical elements shift. Because cinema lenses have connected follow focus gears and a mattebox, telescoping lens barrels are not ideal, thus cinema lens designs provide for internal realignment. All shifting and repositioning of optical elements happen silently and unnoticeable inside of the lens housing. Everything remains as is.

    Barrel telescoping can be from zooming or focusing. Typically barrel telescoping is worse from zooming, however poorly designed prime lenses can exhibit troublesome barrel telescoping when focusing a great distance across the barrel. Typically the issues arise when the lens pushes against the mattebox or the geared focus ring falls off the follow focus.

    http://2.bp.blogspot.com/-5JGgdtfuhr…oom-Lenses.jpg

    http://3.bp.blogspot.com/-oKiTaaLm99…with-Hoods.jpg

    Despite lens hoods being added, one can see the telescoping nature of some photography zooms.
    (images from www.the-digital-picture.com)

    Consistent focus and exposure throughout zoom range
    Cinema zooms almost always carry exposure from one end of the zoom to the other. As an example, take the legendary Angenieux Optimo 12x zoom. It is a perfect T/2.8 from 24mm all the way to 290mm. Coupled with the other impressive optical and mechanical features of this lens, it’s no surprise the thing is the size of a military shell. There are many photography zooms which hold maximum exposure throughout the zoom range, but there are photography zooms which forsake this feature in order to accommodate lens design within a small/light housing and low price. Yuck.

    http://3.bp.blogspot.com/-cd6EevfFG7…cture%2B33.png

    Angenieux 24-290mm T/2.8 Cine Zoom

    Page Three: Mechanical Requirements
    Conclusion
    At the end of the day, a wonderful film can be made on photography lenses or cinema lenses. However, because these two mediums are very different in nature and thus the needs of photographers and cinematographers are very different, using photography lenses for cinema purposes is simply adding possible issues and concerns to an already full plate.

    The same goes for using cinema lenses to take photographs. Using a Master Prime to take a photograph would be equally ridiculous. First of all, the lens is 8″ long and weighs about 5lbs. Additionally, handheld photography is not the same as handheld cinematography. One has the luxury of taking the weight on the shoulder… the other is all taken to the wrist. Now imagine having to carry several of these lenses around for a photo-journalism assignment. Not quite appropriate for the context of use. Focusing quickly would require multiple twists of the lens barrel, and likely lost time trying to reel in the focus, perhaps missing the spontaneous moment of the photo.

    Thus, just as photography, there are types of videography that also may not benefit from cinema lenses. If shooting a documentary, wedding, or event videography that involves long hours of handheld shooting in spontaneous/unpredictable environments, perhaps a very lightweight photography zoom might be a more appropriate tool despite some shortcomings.

    The design points described in this writing are the ideal design points of a modern day cinema lens set. However, not all cinema lens sets contain all of these attributes. Vintage cinema lenses and new lower cost cinema lens sets do not attain all of the above. Just as that is true, the same goes for photography lenses. There are photography lens exceptions to where some lenses exhibit attributes of cinema lenses. For instance, Zeiss ZM’s have f/stop markings for 1/3 stops on the barrel.

    http://4.bp.blogspot.com/-FR-HuLJH8j…0/zm15-pic.jpg

    Zeiss 15mm f/2.8 ZM (Leica Mount) with 1/3 stop mapped f/stop scale

    Shoot a film with the best optics available to the production. Learn the strengths and weaknesses of that lens set and go about doing what is necessary to utilize those strengths and minimize the weaknesses. Cinema lenses simply allow for less weaknesses and more strengths, leaving the burdened mind of the cinematographer to other things. It’s a luxury well worth having.

     
  • s 9:50 PM on 130215 Permalink | Reply
    Tags: , , , ,   

    Camera : Canon vs Nikon 

    from http://kenrockwell.com

    INTRODUCTION
    I’m going to to on and on below about personal experience, so feel free to skip ahead to the real differences between Nikon and Canon.Nikon and Canon are as good as each other. Each are multi-billion dollar optical companies who have been making some of the world’s best optics for numerous consumer, military and industrial applications for decades and decades and decades.
    Each makes lenses as parts of multi-million-dollar steppers used in making electronic chips with more precision anything needed for photography, and each make other optics that sell for hundreds of thousands of dollars in other applications. They each make our cameras and lenses out of the same stuff from which they create these other products.
    I don’t extend this same awe towards discount lensmakers, but I do have this respect for Nikon and Canon and Pentax and LEICAand Fuji and Zeiss who’ve been making much more than cameras for longer than I’ve been alive. I do have a hat off toTokina, who are related to Hoya, who are as far as I know the biggest maker of optical glass on the planet, and whose glass is found in parts of everyone’s lenses.
    Did you know that Nikon is one of the world’s leading makers of professional laboratory microscopes, often beating out Zeiss and Leitz? Nikon also makes the million-dollar lenses and mechanical steppers used in semiconductor manufacture. They have a 37% market share. These lenses and mechanics resolve at 45 nanometers, or less than one-tenth of a wavelength of visible light? That’s over 10,000 lines per millimeter! See Nikon Precision.
    Canon may make their own ICs and image sensors, but for all we know, Canon may use Nikon lenses and steppers to do it! Probably not: Canon also makes steppers and semiconductor photolithography equipment, with a 20% market share. (Thanks to Bates Marshall for those figures.)
    Canon also makes gigantic lenses with 100x zoom ratios for television and lenses for Hollywood motion picture cameras! These sell for six figures.
    Making $20,000, $2,000 or $200 lenses for either Canon or Nikon is child’s play. Their big stuff sells in the $200,000 to $2,000,000 range. We photographers get to benefit from all of it.
    Nikon and Canon are optical companies, not camera, electronic or software companies. It’s sad to see people buy good Nikon or Canon cameras and then put off-brand lenses on them.
    Nikon and Canon are different, but just as good. Anyone who tries to tell you that one or the other is garbage isn’t paying attention, and most likely doesn’t have the other to sell you. Nikon and Canon compete so heavily against each other that if one really were better or worse they would have gone out of business long ago.
    I prefer Nikon DSLRs, and Canon Compacts. Many other people prefer Canon DSLRs and Nikon Coolpix compacts; we’re all different.
    Year to year one usually has an edge on the other. They tend to leapfrog each other back and forth, slowly. LEICA was king from the 1930s through 1950s, Nikon took over from the 1960s through 1980s, Canon was the top pro SLR in the 1990s and 2000s, and as of the Nikon D3 of 2007, Canon and Nikon now run neck-and-neck in the pro market, with Nikon pulling ahead again.
    I shot Minolta from 1973-1983, and have been shooting Nikon since 1983. Shooting for a living, I also got Canon and LEICA systems back in the 2000s, and today in 2012, I shoot all three systems depending on which is best for what I need to shoot. I also got a Fuji X100 in 2011 which I use for my family photosbecause it’s better than any SLR or LEICA.
    Contrary to some beliefs, I get paid nothing by and have no allegiance to Nikon or Canon or Nikon or any other camera maker, other than having used their great products for many decades depending on the brand.
    Shooting all these systems for a living every day makes one very familiar with what each does well — or not, so let me share how they really compare from actual long-term experience
    I spend a lot of time covering the background and details before I summarize the real differences. Feel free to skip ahead if you’re in a rush to spend a few thousand dollars quickly.

    SYSTEM COMPATIBILITY
    Nikon
    Most Nikon SLR camera and lenses made since 1959 are compatible with each other.
    Any two items from about the same 10-20 year technology window will work well with each other.
    The Nikon system is so renowned for its multi-decade interoperability that I have aNikon System Compatibility page discussing it.

    Canon
    On the other hand, Canon flushed compatibility down the toilet in 1987 when it created a new and completely incompatible system of AF cameras and lenses called EOS. Nothing works together before or after the great autofocus divide of 1987.
    To Canon’s credit, the new EOS system is a better design than the old Nikon mount, but old Canon FD manual focus lenses, once promoted as “timeless” by Canon, areuseless on any modern Canon camera.
    Contrast this to Nikon, where just about every lens ever made works swell, with few limitations, on every brand new camera.
    While I shoot both of the Canon systems (FD and today’s EOS systems), most people are only concerned with Canon cameras today, and that’s where the good news starts.
    Because Canon wiped the slate clean and created a completely new camera system for autofocus in 1987, every camera and lens Canon has made from 1987 through today is completely 100% compatible with everything else made since 1987. Every Canon EF lens works perfectly with every Canon EOS 35mm or digital camera ever made. Their oldest EF lenses work perfectly on the newest EOS digital cameras, and the newest EF lenses work perfectly on very first EOS650 camera of 1987. (Flash is a different story, and the smaller EF-s lenses wont’ work on full frame cameras.)
    Nikon can’t come close to this; many Nikon autofocus lenses still sold new today use old technology that won’t autofocus on some of Nikon’s newest cameras!
    Canon cameras can use Nikon lenses, but Nikon cameras can’t use Canon lenses.

    DELIVERY
    One big difference between Nikon and Canon is delivery of new products.
    A good thing about Nikon is that they announce products a couple of months before they become available. You never feel like an idiot having bought a camera that goes obsolete the next day. Canon, on the other hand, usually has cameras available when they announce them, so you can get caught off guard.
    Unfortunately Nikon does this to a fault. It’s good to announce something a couple of months before it comes out, but bad to take orders and not be able to deliver.
    Nikon has been doing this at least since 2000. They announced the 80-400mm VRin January, 2000. It was a year and a half later before you could buy them easily!
    Nikon Announced the D100 in February of 2002 and it was a year until you could get them easily. I had bought a D1H the week before, but didn’t worry even though I would have preferred the D100, because I didn’t have 9 months to wait for one.
    Nikon announced the 12-24mm in February 2003 and took a year until they were easy to find.
    Nikon announced the D70 in February of 2004. That only took a couple of months to get.
    The 18-200mm VR was announced on November 1st, 2005, and Nikon had them on back-order until 2007!
    Canon usually ships its hot new products, while Nikon often strings us out for long periods of time.
    LEICA is a different story. LEICA never makes anything; their new products are never available. You always have to order them and be patient.

    HISTORY
    You have to know the history behind this Nikon versus Canon race to understand it. Here’s my personal experience, which spans most of five or six decades.

    Early 1900s
    Canon was founded in 1934 to sell cheap knock-offs of the new LEICA camera. It was sold with a lens made by Nikon, since Nikon has been making lenses for military applications forever, and Canon had just started in a garage.
    Canon started by making consumer products, and branched out into industrial equipment much later.
    Nikon had been making military instruments for mass destruction long before World War II. Nikon made bomb sights used to murder Americans in the Japanese terrorist attacks on Pearl Harbor in 1941, as well as huge rangefinders for battleship and field artillery in WW II.
    Nikon made no cameras before WW II. After Nikon’s warmongering activities were closed-down after WWII, Nikon had to figure out what to do for peaceful purposes. Their idea was to make rangefinder cameras for consumers in the late 1940s, and then SLRs in 1959.
    Nikon started out making military products and was forced into making consumer products after Japan lost WW II.
    Canon and Nikon have been competing with each other since WWII.

    1960s and 1970s
    My first 35mm SLR camera, bought when I was 11 years old in 1973, was a Minolta. You can see it and its photo quality on my Night Photography page. I upgraded to my dream camera, the Minolta SR-T-102, around 1974.
    Nikon was exclusively an expensive camera for professionals, and Canon made cameras popular with consumers. They didn’t compete much, although as the decade wore on, Nikon started making cheaper cameras and Canon made some more expensive pro cameras that pros wouldn’t buy.

    1980
    In 1980 I wanted all my lenses to use filters the same size so I could change them easily while photographing from my mom’s small plane. Minolta drove me nuts by using a different filter size every time they restyled their lenses. I bought a Nikon F2AS manual camera and a slew of manual focus lenses. I sold the Minolta gear because I thought Nikon was better.
    In 1980 Nikon was the undisputed king of pro 35mm cameras. For the same price as Canon I got what I thought was much better mechanical quality and better access to rental gear. I also thought it was cool to have the same camera used by every other journalist.
    I was still too stupid to realize that 1.) people shooting landscapes used 4 x 5 cameras, not 35mm, and that 2.) All cameras in the same format perform the same.

    1985
    LEICA invented autofocus, and knowing that its customers know how to focus, sold the patent to Minolta, who introduced the world’s first SLR in 1985. A few years later Canon and Nikon had them, too. Professionals laughed at the idea — they knew how to focus, and autofocus was still to slow for sports. Even if AF was fast, sports shooters know where the ball is going before it gets there, which cameras don’t.
    Nikon AF cameras and lenses were completely compatible with older lenses and cameras. This was good because pros all had many thousands of dollars invested in their manual lenses. It was a no-brainer to buy a new Nikon AF camera since it was compatible with everything. New AF lenses were compatible with manual focus cameras. They still are! Nikon solidified the reason to shoot Nikon as a pro: no one had to start out from scratch again. Going to AF in Nikon was easy.
    Nikon AF cameras had motors in the body to focus the lenses mechanically through a small screw in the lens mount. They still do.
    Canon designed their AF system from scratch, and used a completely new and incompatible lens mount. The lenses each had their own motors inside them. If you shot Canon you had to throw away all your lenses and bodies and start from scratch. Not good! To go to Canon AF you had to rebuy your entire system with new AF gear.

    1990
    Pros eventually started using the AF cameras around 1990 and liked them. One teensy-weensy problem around was that Nikon AF cameras couldn’t focus fast enough for sports. The Canon cameras worked great. Pros who shot sports dumped their Nikon gear and moved to Canon in droves. Sports shooters still predominantly use Canon for this reason. I was kidding about slow AF being a teeny problem: it’s why Nikon lost it’s twenty-year lock on the pro journalism market and has never won it back!
    Unlike 1980, in the 1990s Canon cameras evolved to be as professional as Nikon. They have competed neck and neck for the same customers ever since.
    Nikon’s AF speed is as good as Canon today, but no pro is going to sell all his lenses and cameras and start from scratch without a very good reason.
    As a pro you own a lot of gear, all bought at different times. It all needs to work together as a system. Amateurs buy bodies and lenses together, while pros add and delete each body and lens from their systems as it makes sense. Except in the case of total fire or theft, you never get the chance to start over from scratch.
    Better AF performance was why sports pros left Nikon in the 1990s. There’s never been anything compelling enough since then to get them all to switch back, so it’s been a slow road back for Nikon. That’s why you see so many white lenses at sports events, in addition to the fact that Canon Pro Services loans them all out. Remember, sporting is only part of the photo picture. Landscape photographers have been using 4×5″ film for over 100 years and don’t show any signs of changing soon. The best ones rarely use Canon or Nikon.

    1999
    Nikon invents the professional D1, the world’s first practical digital SLR. It was $5,000 and had 2.7MP. Nikon became the leader in professional digital.
    I bought my first AF Nikon, an F100, and liked it so much I eventually wound up buying all new AF equipment anyway.

    2000
    Canon introduced their own first DSLR, the consumer D30. It had the same image quality as Nikon’s metal D1, but for only $3,000 in plastic. It also had 3MP.

    2001
    Canon announces their first professional DSLR, the EOS-1D on 25 September 2001. Canon moves ahead of Nikon in the digital arena.

    2002 – 2004
    Nikon doesn’t introduce much, while Canon is very busy. Every time Nikon announces a new DSLR, Canon outdoes them the next week. This goes on through 2012!

    2005 – 2006
    Nikon’s D70 was my favorite over the better-built Canon 20D. I preferred the D70’s faster operation, specifically, the D70’s immediate access to white balance trims, needed for every shot, over having to go into menus on the 20D.
    In 2006 Canon tweaked the firmware in the 20D and called it a 30D, which I find uncompetitive with the D200. What were they thinking? Nikon leapfrogged them with the D200. The D200 eclipsed anything Canon had done, including the Canon5D which cost three times as much.
    I had always admired the Canon 28 – 135 IS lens. Nikon had nothing similar until Nikon introduced the spectacular 18-200 VR for digital, which eclipses the earlier Canon 28 – 135.
    In 2005, Canon introduced the Canon 5D, the world’s first full-frame consumer DSLR. The 5D has technical performance better than any consumer full-frame camera from Nikon until 2012’s Nikon D800.

    2012
    For the first time ever, Nikon introduces the Nikon D800 which has more resolution than any Canon DSLR. Nikon finally regains it’s leadership status, lost since Canon trumped Nikon’s 1999 D1 with Canon’s 2000 EOS-1D.

    My Personal Preferences
    Nikon and Canon all give the same quality images within the same price class. See my Noise and Resolution comparison. These differences are so small I have to strain to see them with test charts. In the dynamics of the real world they are invisible. I ran those tests, and discovered that whatever differences entertain chat-room participants don’t exist.
    As you ought to know, I’m just a guy who loves to take pictures and today just happens to have literally millions of people reading this site, which are my personal opinions, each month. I don’t get any free gear, money, sponsorships, hats or anything from any camera companies, in spite of what people may think.

    Compacts
    I prefer Canon point-and-shoots. I love their color rendition, and I can’t for the life of me figure out the menus of the Nikon Coolpix cameras.

    DSLRs

    Flash
    The biggest reason pros shoot Nikon, or switch from Canon to Nikon, is that Nikon’s flash exposure control gets perfect flash exposure every time, while a core incompetency of Canon is that Canon DSLRs rarely get consistently good flash exposure.
    Sure, you can get a good shot on a Canon with flash, but it often will take a lot of fiddling, while even the cheapest Nikon DSLR usually gets it right on the first shot. As a pro, this is critical; Nikon’s flash technology has some secret sauce or patents that Canon just can’t match.
    My Nikons give me far more flash sync options. They are well labeled and easy to set without menus. Canon hides them inside other modes deep inside menus.
    For instance, the important Rear Curtain option is hidden in the 30D’s Custom Function 15, while even a cheap Nikon D50 has its own flash sync button.
    Slow sync isn’t selectable separately on these Canons. Program mode always uses a faster speed of about 1/60 as its lower limit. Tv, Av or M modes use slow sync by default. See p.92 of Canon’s 20D manual for details.
    This is too bad: I always shoot my Nikons in Program, and set the slowest flash shutter speed to whatever I want, usually 1/30 or 1/15 to let in enough ambient light. This is easy to change on Nikon, and almost fixed in stone on these Canons.
    I have no idea how to set manual flash mode on the Canons, while on the Nikons it’seasy to set up wireless remote flash control.
    My Nikon DSLRs let me know if the flash may have underexposed (the bolt in the finder blinks rapidly). I’ve never seen that on the Canons. The Nikon flash units even tell me, in stops, by how much they have underexposed.

    C1 C2 C3 Modes
    Most Canons have “C” modes on their control dials. Each of these is a complete memory for everything about the camera. Every time you select that position, everything about the camera is recalled from when you saved it!
    Nikons, except for the D7000, have no easily recalled total-camera-state recall functions. Every time you want to shoot anything different on a Nikon, you have to reset many different things in many different menus. Nikons often have “settings banks,” but there are many of them, and they still don’t save and recall everything, so they don’t help much. Even if they did, there is no way to lock them; as you change settings, there is no way to recall what had been set before, so they are useless.
    With most Canons, its fast and easy to get back to all the settings you want, and if you have more than one C on your dial, I set C1 for my landscape, and C2 for my people shots.
    Easy!
    Every time I wake up my Canon in a C mode, it resets to all my personal favorite settings, which is far better than Nikon’s one factory-default green-button reset that neither resets everything, and certainly doesn’t reset to my settings.

    Smart (green-button) Reset
    I always use the Smart Reset (two-green-button reset) of my Nikon DSLRs. They reset all the shot-to-shot stuff, like WB and ISO and selected AF sensor and exposure compensations and image and file sizes, and leave alone the rarely set items like file numbering, custom functions and beeps.
    If I don’t use Nikon’s green-reset of Canon’s “C” modes, I’ll often have left the camera at a deep tungsten white balance and ISO 1,600, which of course ruins all shots made that way until I notice and reset them all by hand.
    With my Nikons I hold the two green buttons and all is back at normal.

    Playback Held Hostage
    My biggest complaint about all my Canons, DSLR and compact, is that they lock ne out of any playback controls, like zooming, until after I’ve pressed the PLAY button. With Nikon’s, as soon as my photo shows on the back after I shot it, I have full access to zooming and selecting other images. (I usually have to enable this in Nikon’s menu.)
    Nikons play fast. Canon DSLRs take time when you try to display pages of 9 playback images and flip though them.

    Seven versus Eight-bladed diaphragms
    Nikon always uses superior 7- or 9-bladed lens diaphragms, while another core incompetency of Canon is often using 6-or 8-bladed diaphragms.
    Odd-numbers of diaphragm blades lead to superior sunstars (14- or 18-points from Nikon vs. 6- or 8- points from Canon) and less disruptive shapes of out-of-focus highlight blobs (bokeh), septagons or nonagons from Nikon versus obnoxious hexagons or octagons from Canon. When we see hexagons or octagons, we thing snowflakes or stop signs, while septagons or nonagons are so low-key that you probably don’t even recognize the names of the shapes!

    Control Sensibilities
    On my Nikons, one dial always sets aperture and the other always sets the shutter. On the Canons, what dial does what depends on your mode. That drives me crazy – I need to have the same dial change the same thing every time I spin it, regardless of the shooting mode.
    Nikon turns off the exposure compensation indication if you haven’t set it. Canon leaves it on, even in the finder, even if it’s set at zero.
    I prefer Nikon’s easy-to-find-in-the-dark LCD illuminator button. It’s concentric with the shutter; just twist. On the Canons you need to feel around for a dedicated button.
    When you hit the LCD illuminator, either on camera or on flash, everything lights up. On a Canon Rebel XT and EX-550, each button only lights one of them!

    Auto ISO
    Nikon has more flexibility in programming Auto ISO.

    Autofocus
    I get more consistent results on my Nikons. It’s not unusual to get an unfocused image with my Canons, with the camera’s AF confirmation light lit on an unmoving subject.
    My Canons tend to be a little faster with cheap lenses, and about the same with the expensive ones. In other words, Nikon lets the AF of their cheap lenses ($80 – 500) get slower, both both brands of pro lenses (c. $1,500 range) are equally fast.

    Locking Flash Shoe
    Nikons for about 15 years have had a pin in the flash shoe which bolts the flash solidly into the hot shoe. It will never slide a little out and lose its electrical connection. It flicks with a lever.
    Canon is still back in the 1970s. The 550EX flash only has a plastic screw-down ring on its bottom, which doesn’t work, is a pain to loosen when needed, and loosens itself when you don’t want it to. This results in the flash misfiring, since only a small amount of slippage is enough to disconnect the small electrical pins.

    AF Assist Illuminators
    Canon got all the sports shooter business in the 1990s because of their superior AF system. Today Nikon is fine, but pros who moved have no need to return. Pros have a huge investment in gear; it’s not just one camera. Even I have Nikon gear bought over 25 years ago that I still use today.
    Something very annoying about the Canon AF system has been their attempt to use the on-camera flash for low-light AF assist. I kid you not: Canon cameras fire off multiple extended bursts of the flash to light the subject for focusing in the dark. Every time this happens we say “What the heck was that???” and try to turn it off. This only happens in dark areas where the AF system can’t see enough, and of course those are the conditions under which the flash going off in people’s faces is the most annoying. Egad.

    The Freedom Lens: Nikon’s 18-200mm VR/IS (what is Vibration Reduction?)
    Canon, and no one, makes anything that can do what the life-changing Nikon 18-200mm VR does. There are loads of off-brand 18-200mm lenses, but they have no VR (critical at 200mm) and only have primitive focus control with no instant manual override.
    Canon’s 18-200 IS is inferior: it demands you move a switch to get between auto and manual focus, while on the Nikon 18-200 VR, all you do is grab the focus ring.
    Sigma announced an 18-200mm OS (stabilized) lens, but it’s only f/6.3 (not rated to work well for AF, which needs at least f/5.6) and I suspect it has primitive focus, not HSM/AFS/USM. We’ll see, and I avoid off brand lenses anyway. As I explained, the whole point of a Canon or Nikon camera is to use the superior lenses made by either, both of which are very serious optical companies, unlike the off brands.

    Viewfinder Grids
    Most digital Nikons have magic, selectable viewfinder grids, free!
    The Canon DSLRs don’t. You can buy an optional screen for the 5D, and manually jam it in the camera’s viewfinder.
    Most point and shoots from Canon and Casio have these, too, just not the Canon DSLRs.
    I use these grids to help me get level photos. It’s one of the first things I turn on when I get a new camera.

    Data Embedding
    My Nikons let me embed my ©, name and phone number into the EXIF data of every one of the 75,000 shots I’ve made, no computer required.
    I haven’t seen that yet on the Canons, unless you dick with software in your computer. Pros don’t have time for computers, we have photos and money to make.

    Automatic Zone System Exposure and Development
    The Nikons have an AUTO CONTRAST mode by default (called Tone Compensation under Optimize Image) which uses the Zone System to optimize the camera’s contrast to the subject. It was awful in the D1H, and in the D70, D80 and D200 it works great to match conditions. The Canons have no such mode: you have to set them manually. That said, in harsh light sometimes my D200 goes a little too flat, and the Canons always look great anyway. The Canons also make it easy to set these, by using a custom function to have their SET buttons call up instant selection of preset image adjustments, called Parameters on some Canons and “Image Styles” on others.

    AF Assist Lights
    Nikon has annoying little lamps on the camera body. Canon doesn’t, and instead fires the flash with an ultra-annoying series of continuous bursts. Boy, if having the flash fire a zillion times doesn’t get you thrown out of a venue, nothing will.
    Canon’s self-timer lights don’t work as the AF assist lights as they do on Nikon.
    To Canon’s credit, their AF system works great so long as you have at least a little light; just forget about it in darkness.

    Viewfinder

    They are about the same size, clarity and brightness, depending on which you compare. They all have gesticulatic dioptometricization. The Rebels are about the same size as the D50/70, the 20D/30D are a bit bigger, the D80/D200 much bigger, and I presume the 5D the Mother of them all.

    I find the in-finder data a little bit sparser in Canon than in my Nikons. I also found the Canon’s digital thinner and harder to see than in my Nikon DSLRs.
    All of them do a great job of automatically varying the brightness of the display to match ambient conditions.

    Sensor Sizes
    Canon curses us with three incompatible sensor sizes. For two of the sizes, 1x as in the 5D and 1DS Mk II, we have to use the 16-35, 17-40 and 15mm fisheye lenses, and on the 1.6x consumer cameras (20D, 30D, Rebel) we have no fisheye, but do have the excellent 10-22mm. The pros using the 1.3x (1D) cameras are screwed: the pros who could make the best use of wide angle lenses in news reporting just don’t have them. There are no fisheyes and no ultrawide lenses for the 1.3x cameras.
    Why do I say cursed? Because as I dig through the Canon system to report on it, I have to make three sets of tables for each lens. Each lens performs differently on each format camera. Corner sharpness? The corners are in three different places!
    To use the Canon system, I have to buy different lenses for each camera. I bought a 10-22mm for the XTi and its brethren, and have a 16-35 and 17-40mm on loan to figure out which one I need to do the same thing on the 5D. Of course my pain is your gain: I’ll be doing a knock-down, drag-out donnybrook between them (apologies to Pop Photo cover copywriters)
    I love wides. Telephotos aren’t as weird, although the 18-55mm, 17-85mm, 17-55mm and I forget what else only work on the 1.6x cameras.

    Data Transfer
    Both are as fast. The newer ones are all fast enough to eliminate card readers.
    My Nikons show up as hard drives on my computers. I drag and drop files either way, no software required. I create folders in-camera, and download sorted photos directly from my Nikons! Data from the Canon cameras can only be read via software.

    Help

    Nikons have a “?” button for explaining most of the menu functions. Canons don’t.

    Nikon USA’s free live tech help line, (800) NIKON-UX, is open all the time, 24/7/365.

    Canon USA’s free help line, (800) OK-CANON, lets its very good people go home late and on Sundays.

    Both help lines are very good. I’ve always gotten someone who knows the answer on the first try.

    Shots Remaining
    This is even.
    The Canons are stupid and stop at 999, while Nikons are smart enough to show “2.7k” if they need to. They each only have three digits with which to display this.
    My Nikons are defective in design: they underestimate, which is pretty funny, since the Canons vary the size of the file to fit the image, and Nikons tend to make the same size files, making this easier. As an example, my D80 says “516” shots for Normal JPG LARGE images on a 2 GB card. I actually get about 800 shots on those.

    Trick Custom Image Settings and Tweaks
    Nikon makes you buy their buggy $100 Nikon Capture software to create and load crazy curves and settings into your camera. You need to buy this to tweak curves, colors and contrasts other than what you can do in the menus.
    Canon makes this available for free here, and includes all sorts of fun presets, too.

    JPG File Size and Quality Optimization
    Busy, detailed, contrasty subjects need more JPG bits to look good than do images with flat backgrounds, low contrasts and blank spaces.
    Canon does a better job here. Canon’s JPG file sizes vary to maintain constant quality. It’s not unusual to see a fat file three times the size of a small one, with the only difference being the subject. Nikons are stupider and tend to keep JPG files sizes very similar, wasting bits when not needed and lowering quality when they are.
    I prefer Canon. Even the Nikon D2Xs and D200, which allow a new choice to let the JPGs files vary size, don’t work as well as Canons have for years by default.

    Clock Setting
    I prefer my Nikons, which let me check the time to the second and change time zones without altering my to-the-second calibration. The Nikons let you set the clock to any random second, not just at the minute as with almost every other digital clock.
    The Canons only read to the nearest minute, and don’t even recognize time zones. I lose my exact setting, since I have to reset it from scratch when changing time zones.
    The latest Nikons really did a good job and have an easy-to-use world map and time zone calculator and display. The Nikons (my D80 in this case) sadly hide the clock setting under the menu item MENU > SETUP > World Time > Date.

    Depth-of-Field Preview Button
    Canon’s buttons work instantly and silently. I wish everything worked this well.
    Unfortunately, Canon only in 2012 is starting to out this button on the correct side of the camera. FOr decades, Canon has put this button is on the wrong side of the camera so it takes a second hand to use.
    Nikon’s buttons are bogus: they clatter all around as if the camera took a picture. This is annoying, but was handy back in film days when I could hit it to satisfy people pestering me to take their pictures. Today, at least Nikon always has these buttons on the correct side of the camera.

    Front Lens Caps
    Canon’s caps are pretty flimsy. They only have tabs for release from the side, not the front.
    Nikon has much, much better and beefier caps.

    Color and Tone
    Nikon and Canon each use different “secret sauce” that defines the colors and tones captured by their cameras, especially when you start adjusting the color, contrast, saturation and the zillion other controls on cameras today.
    Images will look different from either brand of camera. Most Nikons and most Canons’ match other cameras of the same brand when set alike, but images shot on Nikons most certainly won’t match the colors, highlights, shadows and grays of the other.
    In this case, there is no right and wrong. Photography is an art, and in art, it’s about what looks best to you, the artist.
    Look carefully at the color rendition you get from either camera, and shoot what you prefer.
    Auto White Balance (AWB) works very differently in different cameras. If you shoot in AWB as I do, one brand or the other may work better under the unique conditions under which you shoot. Pay attention and you’ll probably prefer one over the other.

     
  • s 9:49 PM on 130215 Permalink | Reply
    Tags: , , , ,   

    Anamorphic format is a term that can be used either for: the cinematography technique of capturing a widescreen picture on standard 35 mm film, or other visual recording media, with a non-widescreen native aspect ratio; or a photographic projection format in which the original image requires an optical anamorphic lens to recreate the original aspect ratio. It should not be confused with anamorphic widescreen, which is a very different electronically based video encoding concept that uses similar principles to the anamorphic format but different means. The word “anamorphic” and its derivatives stem from the Greek words meaning formed again, due to reshaping the image onto the film or recording media.

    HistoryThe process of anamorphosing optics was developed by Henri Chrétien during World War I to provide a wide angle viewer for military tanks. The optical process was called Hypergonar by Chrétien and was capable of showing a field of view of 180 degrees. After the war, the technology was first used in a cinematic context in the short film Pour Construire un Feu (To Build a Fire) in 1927 by Claude Autant-Lara.[1]
    In the 1920s, phonograph and motion picture pioneer Leon F. Douglass also created special effects and anamorphic widescreen motion picture cameras. However, how this relates to the earlier French invention, and later development, is unclear.[2]
    Anamorphic widescreen was not used again for cinematography until 1952 when Twentieth Century-Fox bought the rights to the technique to create its CinemaScope widescreen technique.[1] CinemaScope was one of many widescreen formats developed in the 1950s to compete with the popularity of television and bring audiences back to the cinemas. The Robe, which premiered in 1953, was the first feature film released that was filmed with an anamorphic lens.
    [edit]DevelopmentThe development of anamorphic widescreen arose due to a desire for wider aspect ratios. The modern anamorphic widescreen format has an aspect ratio of 2.40:1, meaning the picture width is 2.40 times its height, (technically it is 2.39:1, but it is known professionally as 2.40:1 or “two-four-oh”). Academy format 35 mm film (standard non-anamorphic full frame with sound tracks in the image area) has an aspect ratio of 1.37:1, which is not as wide (or, conversely, is taller). In non-anamorphic spherical (flat) widescreen imaging, the picture is recorded on film so that its full width fits within the film frame, and substantial film frame area is wasted on portions that will be matted out by the time of projection, either on the print or in the projector, in order to create a widescreen image in the theater (Figure 1).
    To make full use of the available film, an anamorphic lens is used during recording. Up to the early 1960s, three major methods of anamorphosing the image were used: counter-rotated prisms (e.g., Ultra Panavision), curved mirrors in combination with the principle of Total Internal Reflection(e.g., Technirama), and cylindrical lenses (lenses curved, and hence squeezing the scene being photographed, in only one direction, as per a cylinder, e.g., the original CinemaScope system based on Henri Chrétien’s design). Whatever the method used, the anamorphic lens leaves the image on film looking as if it had been stretched vertically. This deliberate geometric distortion is then reversed upon projection, resulting in a wider aspect ratio on-screen than that of the frame as recorded on film.
    An anamorphic lens consists of a regular spherical lens, plus an anamorphic attachment (or integrated lens element) that does the anamorphosing. The anamorphic element operates at infinite focal length (so that it has little or no effect on the focus of the prime camera lens onto which it is mounted), but still nevertheless anamorphoses the optical field. When you use an anamorphic attachment, you use a spherical lens of a different focal length than you would for 1.85:1 (one sufficient to produce an image the full height of the frame and twice the width), and then the anamorphic attachment squeezes 2x horizontally. Specialized reverse anamorphic attachments existed that were relatively rarely used on projection and camera lenses to expand the image in the vertical space (e.g., the early Technirama system mentioned above), so that (in the case of the common two-times anamorphic lens) a frame twice as high as it might have been filled the available film area. Since a larger film area needed to be used to record the same picture, quality was increased.
    The distortion introduced in the picture must be corrected when the film is played back, so another lens is used during projection that either expands the picture back to its correct proportions or (as in the case of the now defunct Technirama system) squeezes the image vertically to restore normal geometry. It should be noted that the picture is not manipulated in any way in the complementary dimension to the one anamorphosed (horizontally squeezed or vertically stretched).
    It may seem that it would be easier to simply use a wider film for recording movies; however, 35 mm film was already in widespread use, and it was more economically feasible for film producers and exhibitors to simply attach a special lens to the camera or projector, rather than investing in a new film format, along with the attendant cameras, projectors, editing equipment and so forth.
    Cinerama was an earlier attempt to solve the problem of high-quality widescreen imaging, but anamorphic widescreen eventually proved to be more practicable. Cinerama preceded anamorphic films, but consisted of three projected images side-by-side on the same screen: the images never blended together perfectly at the edges, and it required three projectors; a 6-perf-high frame, which required four times as much film; and three cameras (eventually just one camera with three lenses and three streaming reels of film and the attendant machinery, which presentedsynchronization problems). Nonetheless, the format was popular enough with audiences to spur studios to the wide screen developments of the early 1950s. A few films were distributed in Cinerama format and shown in special theaters. Anamorphic widescreen was attractive to studios because of its similar high aspect ratio (Cinerama was 2.59), without the disadvantages of Cinerama’s added complexities and costs.
    The common anamorphic widescreen film format in use today is commonly called Scope or 2.35:1 (the latter being a misnomer born of old habit; see “2.35, 2.39 or 2.40?” below). Filmed inPanavision is a phrase contractually required for films shot using Panavision’s anamorphic lenses. All of these phrases mean the same thing: the final print uses a 2:1 anamorphic projector lens that expands the image by exactly twice the amount horizontally as vertically. This format is essentially the same as at the time of CinemaScope, except for minor technical developments.
    There are artifacts that can occur when using an anamorphic camera lens that do not occur when using an ordinary spherical lens. One is a kind of lens flare that has a long horizontal line usually with a blue tint and is most often visible when there is a bright light, such as from car headlights, in the frame with an otherwise dark scene. This artifact is not always considered to be a problem. It has come to be associated with a certain cinematic look and is in fact sometimes emulated using a special effect filter in scenes that were not shot using an anamorphic lens. Another common aspect of anamorphic lenses is that light reflections in the lens will be elliptical rather than round, as they are in spherical cinematography. Additionally, wide angle anamorphic lenses of less than 40 mm focal length produce a cylindrical perspective, which some directors and cinematographers, particularly Wes Anderson, use as a stylistic trademark.
    Another characteristic of anamorphic camera lenses is that out-of-focus elements tend to be blurred more vertically. An out-of-focus point of light in the background will appear as a vertical oval rather than a circle. When the camera shifts focus, there is often a noticeable effect where elements appear to stretch vertically when going out of focus. However, the commonly cited claim that anamorphic lenses produce a shallower depth of field is not entirely true. Because of the cylindrical element in the lens, anamorphic lenses take in a horizontal angle of view twice as wide as a spherical lens of the same focal length. Because of this, cinematographers will often use a 50 mm anamorphic lens when they would otherwise use a 25 mm spherical lens, a 70 mm rather than a 35 mm, and so on.
    A third characteristic, particularly of simple anamorphic add-on attachments to prime lenses, is “anamorphic mumps”. For reasons of practical optics, the anamorphic squeeze is not uniform across the image field in any system, cylindrical, prismatic or mirror-based. This variation results in some areas of the film image appearing more stretched than others. In the case of an actor’s face in the center of the screen their faces look somewhat like they had the mumps, hence the name for the phenomenon. Conversely, at the edges of the screen actors in full length view can become skinny-looking. In medium shots, if they walk across the screen from one side to the other, they increase in apparent girth. Early Cinemascope presentations in particular (usingChrétien’s off-the-shelf lenses) suffered from it. The solution was to link the anamorphic squeeze of the add-on adapter to the focus position of the prime lens, so that as focus changed the anamorphic ratio changed along with it, resulting in a normal-looking geometry in the area of interest on-screen. In early prismatic systems such as Panavision’s Ultra-Panavision system, the angle of counter-rotation between prisms was linked by a mechanical system to the focus ring of the prime lens. In later cylindrical lens systems, the change in aspect ratio required between focus positions was achieved by combining two sets of anamorphic optics in one: a robust “squeeze” system coupled with a slight expansion sub-system. The expansion sub-system was counter-rotated in relation to the main squeeze system, all in mechanical interlinkage with the focus mechanism of the prime lens. The combination of squeeze and expansion changed the anamorphic ratio to the extent required to minimize the effect of anamorphic mumps in the area of interest in the frame. Though these techniques were regarded as a fix for the anamorphic mumps, they were a compromise. Cinematographers still needed to be careful with their framing of the scene so that effects of the change in aspect ratio were not readily apparent. The first company to produce an anti-mumps system was Panavision in the late 1950s.
    While the anamorphic scope widescreen format is still in use as a camera format, it has been losing popularity in favor of flat formats, mainly Super 35 mm film. (In Super 35, the film is shot flat and can then be matted and optically printed as an anamorphic release print.) There can be several reasons for this:
    An anamorphic lens can create artifacts or distortions as described above.An anamorphic lens is more expensive than a spherical lens.Because the anamorphic-scope camera format does not preserve any of the image above and below the scope frame, it may not transfer as well to narrower aspect ratios, such as 4:3 or16:9 for full screen television.Film grain is less of a concern because of the availability of higher-quality film stocks and digital intermediates, although the anamorphic format will always yield higher definition than the non-anamorphic format.

    The aperture of the lens (theentrance pupil), as seen from the front, appears as an oval.

    Anamorphic scope as a printed film format, however, is well established as a standard for widescreen projection. Regardless of the camera formats used in filming, the distributed prints of a film with a 2.39:1 theatrical aspect ratio will always be in anamorphic widescreen format. This is not likely to soon change because movie theaters around the world don’t need to invest in special equipment to project this format; all that is required is an anamorphic projection lens, which has long been considered standard equipment.
    Other widescreen film formats (commonly 1.85:1 and 1.66:1) are simply cropped in vertical size to produce the widescreen effect, a technique known as masking or matting. This can occur either during filming, where the framing is masked in the gate, or in the lab, which can optically create a matte onto the prints. Either method produces a frame similar to that in Figure 1, and is known as a hard matte. Many film prints today have no matte, though the film is framed for the intended aspect ratio; this approach is called full-frame filming, since most spherical 4-perf cameras retain the silent gate. In these, the film captures additional information that is masked out during projection using an aperture mask in the projector gate, and is known as soft matte. This approach allows filmmakers the freedom to include the additional picture in an open matte 4:3 transfer of the film and avoid pan and scan, by protecting the frame for 4:3.
    [edit]2.35, 2.39 or 2.40?One common misconception about the anamorphic format concerns the actual width number of the aspect ratio, as 2.35, 2.39 or 2.4. Since the anamorphic lenses in virtually all 35 mm anamorphic systems provide a 2:1 squeeze, one would logically conclude that a 1.375:1 full academy gate would lead to a 2.75:1 aspect ratio when used with anamorphic lenses. Due to differences in the camera gate aperture and projection aperture mask sizes for anamorphic films, however, the image dimensions used for anamorphic film vary from flat (spherical) counterparts. To complicate matters, the SMPTE standards for the format have varied over time; to further complicate things, pre-1957 prints took up the optical soundtrack space of the print (instead having magnetic sound on the sides), which made for a 2.55:1 ratio.
    The initial SMPTE definition for anamorphic projection with an optical sound track down the side (PH22.106-1957), issued in December 1957, standardized the projector aperture at 0.839 × 0.715 inch (21.3 × 18.2 mm) (aspect ratio 1.17:1). The aspect ratio for this aperture, after a 2x unsqueeze, is 2.3468…:1 which rounded to the commonly used value 2.35:1. A new definition was issued in October 1970 (PH22.106-1971) which specified a slightly smaller vertical dimension of 0.700 in. for the projector aperture to help make splices less noticeable to film viewers. Four-perf anamorphic prints use more of the negative’s available frame area than any other modern format which leaves little room for splices; as a consequence, a bright line would flash onscreen when a splice was projected and theater projectionists had been narrowing the vertical aperture to hide these flashes even before issuance of PH22.106-1971. This new projector aperture size, 0.838 × 0.700 inch (21.3 × 17.8 mm), aspect ratio 1.1971…:1, made for an un-squeezed ratio of 2.39:1 (and commonly referred to by the rounded value 2.40:1 or 2.4:1). The most recent revision, from August 1993 (SMPTE 195-1993), slightly altered the dimensions so as to standardize a common projection aperture width (0.825-inch, or 21.0 mm) for all formats, anamorphic (2.39:1) and flat (1.85:1). The projection aperture height was also reduced by 0.01″ in this modern specification to 0.825 × 0.690 inch (21.0 × 17.5 mm), aspect ratio 1.1956…:1 (and commonly rounded to 1.20:1), to retain the un-squeezed ratio of 2.39:1.[3] The camera’s aperture remained the same (2.35:1 or 2.55:1 if before 1958), only the height of the “negative assembly” splices changed and, consequently, the height of the frame changed.
    Anamorphic prints are still often called ‘Scope or 2.35 by projectionists, cinematographers, and others working in the field, if only by force of habit. 2.39 is in fact what they generally are referring to (unless discussing films using the process between 1958 and 1970), which is itself usually incorrectly rounded up to 2.40 (instead of the correct 2.4). With the exception of certain specialist and archivist areas, generally 2.35, 2.39, and 2.40 mean the same to professionals, whether they themselves are even aware of the changes or not.
    [edit]Lens makers and corporate trademarksSee also: List of anamorphic format trade names
    There are numerous companies that are known for manufacturing anamorphic lenses. The following are the well known in the film industry:
    [edit]OriginationPanavision is the most common source of anamorphic lenses, with lens series ranging from 20mm to a 2,000mm anamorphic telescope. The C-Series, which is the oldest lens series, are small and lightweight, which makes them very popular for steadicams. Some cinematographers prefer them to newer lenses because they are lower in contrast. The E-Series, of Nikon glass, are sharper than the C-Series and are better color-matched. They are also faster, but the minimum focus-distance of the shorter focal lengths is not as good. The E135mm, and especially the E180mm, are great close-up lenses with the best minimum focus of any long Panavision anamorphic lenses. The Super (High) Speed lenses (1976), also by Nikon, are the fastest anamorphic lenses available, with T-stops between 1.4 and 1.8; there is even one T1.1 50mm, but, like all anamorphic lenses, they need to be stopped-down for good performance because they are quite softly focussed when wide open. The Primo and Close-Focus Primo Series (1989) are based on the spherical Primos and are the sharpest Panavision anamorphic lenses available. They are completely color-matched, but also very heavy: about 5–7 kilograms. The G-Series (2007), Panavision’s latest anamorphic lens series, performance and size comparable with E-Series, in lightweight and compact similar to C-Series.Vantage Film, designers and manufacturers of Hawk lenses. The entire Hawk lens system consists of 50 different prime lenses and 5 zoom lenses, all of them specifically developed and optically computed by Vantage Film. Hawk lenses have their anamorphic element in the middle of the lens (not up front like Panavision), which makes them more flare-resistant. This design choice also means that if they do flare, one does not get the typical horizontal flares. The C-Series, which were developed in the mid-1990s, are relatively small and lightweight. The V-Series (2001) and V-Plus Series (2006) are an improvement over the C-Series as far as sharpness, contrast, barrel-distortion and close-focus are concerned. This increased optical performance means a higher weight, however (each lens is around 4-5 kilograms). There are 14 lenses in this series which goes from 25mm to 250mm. The V-Series also have the best minimum focus of any anamorphic lens series available and as such can rival spherical lenses. Vantage also offers a series of lightweight lenses called V-Lite. They are 5 very small anamorphic lenses (about the size of a Cooke S4 spherical lens), which are ideal for handheld and steadicam while also giving an optical performance comparable to the V-Series and V-Plus lenses. In 2008 Vantage introduced the Hawk V-Lite 16, a set of new lenses for 16 mm anamorphic production, as well as the Hawk V-Lite 1.3x lenses, which make it possible to use nearly the entire image area of 3-perf 35mm film or the sensor area of a 16:9 digital camera and at the same time provide the popular 2.39:1 release format.Joe Dunton Camera (JDC): Manufacturer and rental house based in Britain and North Carolina, which adapts spherical lenses to anamorphic by adding a cylindrical element. Its most popular lenses are adapted Cooke S2/S3, but they have also adapted Zeiss Super Speeds and Standards, as well as Canon lenses. JDC was purchased by Panavision in 2007.[1]Elite Optics, manufactured by JSC Optica-Elite Company in Russia and sold in the United States by Slow Motion Inc.Technovision, a French manufacturer that, like JDC, has adapted spherical Cooke and Zeiss lenses to anamorphic. Technovision was purchased by Panavision in 2004.Isco Optics, a German company that developed the Arriscope line for Arri in 1989.

     
  • s 9:41 PM on 130215 Permalink | Reply
    Tags: ,   

    Magic Lantern Software Hack – 5Dmk3 

    http://www.magiclantern.fm

     

    Usage:

    1) Update camera firmware to 1.1.3.
    2) Format the card from the camera.
    3) Copy ML files on the card and run Firmware Update.
    Risks:
    - Alpha 1 was downloaded over 3000 times, so it should be OK.
    - Nothing is written into ROM, and no camera settings are changed by this version, so risks should be minimal.
    - I didn’t run any field testing, there may be rough edges, not recommended for production work.
    - If anything goes wrong, we don’t pay for repairs. Use Magic Lantern at your own risk!
    Features:
    - Magic Zoom (zoom while recording), experimental focus peaking modes, ghost image, display presets
    - Movie indicators, movie logging, rec/standby notification, force LiveView for manual lenses
    - Gradual exposure in movie mode
    - HDR video
    - Brightness, contrast, saturation, display gain, color schemes, UniWB correction, upside-down mode
    - Clean HDMI with pillarboxes
    - Anamorphic and fisheye correction
    - Image review tweaks (exposure adjust, remember zoom position…)
    - Task and CPU usage info
    From alpha 1:
    - zebras, focus peaking, cropmarks, spotmeter, histogram, waveform, vectorscope, audio meters.
    - card benchmark, debug info, stability tests.
    Tips:
    - Disable Auto Power Off.
    - Recommended usage: copy ML on a small SD card, keep it in the camera, and use CF cards for shooting.
    - You can use any card combination, just don’t put ML on both cards.
    - EyeFi cards are working!!! (thanks kikouyou)
    Known issues:
    - Some users reported a few random lock-ups with Alpha 1, but I could not reproduce any.
    - The experimental focus peaking modes are a bit too slow (will slowdown LiveView frame rate).
     
  • s 9:35 PM on 130215 Permalink | Reply
    Tags: , , , ,   

    Nikon to Canon Lens Adapter 

    Cinevate
    Fotodiox (v1?)
    Fotodiox Pro v2
     
     
    FOTODIOX PROBLEM
    Now that we know what the flaw is, what to do? Well, it turns out are two generic Nikon/EOS adapter designs out there. Most importers (Fotodiox included) order these from China and put their own logo on it. I have an adapter *identical* to the Fotodiox that I got from eBay(tons of those out there) except it doesn’t have the Fotodiox name. You can tell this design from the presence of a little black spring loaded lever that you press to unattach the lens from the adapter. This is the flawed design and the one to avoid.

    The other (costs about the same) has a little square tab with a hole in the middle which you push/pull to mount/ unmount the lens from the adapter. I own one of these as well. There is almost zero play with the lens mounted on this. It fits tightly and is a pleasure to focus with. This is the one to get. These are also plentifully available on eBay.
    REMOVAL

    So I learned that I wasnt the only person getting their fingers sliced up while trying to remove the Fotodiox Nikon adaptor off an canon camera. I finally figured it out and shot a quick video on how to remove it.
    ***I take no responislbity for anyone breaking their adaptor/lens/camera or injuring themselves in the process of removing the adaptor. In other words be careful.***
    Taking off the adaptor is actually very simple:
    Step 1: take the lens off the camera
    Step 2: locate the metal flap, stick a flat head screwdriver under the flap and while lifting the flap up move the flap slightly to the left. The goal here is too hang the flap on the rim so that it stays up
    Step 3: lastly twist the adaptor off. Use caution when twisting the adaptor off. It is very sharp and will slice your fingers if your not careful. I recommend using gloves.
    I’m a visual person so if the directions dont help here’s a video I shot of me taking the adaptor off:

     
  • s 9:34 PM on 130215 Permalink | Reply
    Tags: diy,   

    Motorized DIY 

    http://www.diyphotography.net/using-a-motorized-yoyo-as-a-panning-slider

    I just love it when people use ordinary stuff to create new gear. Take a Yoyo for example. It’s built to roll and collect wire, reminds you of something? It reminded Marc Cocchio of a basic slider. And indeed a slider was build from a yoyo. Here are Marc’s rough guidelines on how to make a similar device.

    (Of course, if Yoyo seems absurd to you, you can always go for a pen or a BBQ Rotisserie.

    As a maker, Marc used all kinds of scrap that was lying around and a bit of trial and error, so the tutorial below is set so you can build a similar (yet not an exact copy) of the slider.

    The non-cheap portion of this project is the camera, remote and tripod. It’s important to have a tripod with an “arm” that can rotate such as my Giottos MT8361. Manfrotto makes a few cool ones, too.

    Step 1: Get A Motor

    The most important part is the motor. This is the item which took the most effort to hunt down. I’ve seen rotisserie motors and heavy duty motors, but I really didn’t want to spend much money on an experiment.

    This particular motor (with worm gear box) spins at 7rpm. I think I could slow it down more by resisting some of the voltage. I bought mine for about $10 on Amazon Japan, but it’s just a general hobby-motor for RC projects (think slow, like a tank’s turret).

    Step 2: The Yoyo

    I played around with a few options (as simple as just having the string wrap around the axle), but the yoyo ended up being perfect. The string has no “memory” nor will it easily tangle. It’s a perfect spool. Attaching the motor’s axle to the yoyo may or may not be straightforward… it depends on which combination of the two you end up with. My yoyo had holes lined up perfectly with one of the axle attachments, so I lucked out. Results will vary.

    Step 3: Power

    Two AAs and a standard switch inside the (somewhat trite at this point) Altoids mint tin. In retrospect, I didn’t need to put them in a tin; I could have saved space and kept everything uncased.

    Step 4: A Platform To Mount Your Tripod

    I chose a thin piece of wood, because it’s so easy to drill into. Cutting-boards or thin metal would do, too. I found a perfect size mount (see pictures) by bringing my tripod to the hardware store and playing with different metal pieces. The “U-bolt” with a bit of padding (that’s the red square) makes it quick-release without the need of any tools. I just tighten/loosen by hand.

    Because the platform is wood, it’s easy to mount anything on top. I made sure the yoyo was farthest from the “center of rotation” of the tripod, so as to maximize leverage.

    Other Uses:

    This is a cheap afternoon project, assuming you already have a suitable tripod. This slow motor can easily be added to slider-rails (homemade or otherwise), or even cheaper options (like a skateboard on a smooth surface.)

    The DIY Camera nerd makers community online is pretty awesome. I know (from looking around) that often the greatest challenge for similar projects is finding a cheap slow-moving motor. I used a hobby “worm gear box,” which you can find at any hobby store or site, and likely amazon. They are cheap, but they can’t carry too much weight (I suspect.) Any more ideas for slow moving motors are always welcome.

     
  • s 9:28 PM on 130215 Permalink | Reply
    Tags: , , , , , zeiss   

    Canon Lens 

    canon 40mm pancake – for my standard use carry around lens. Small and cheap and decent lens. (this is similar to what i already have, though for such a cheap price seems it could be very worthwhile investment. The ability to be shooting more often and more conveniently and discreetly.Canon 24-105 zoom – all around multi purpose film and shoot lens. good for portraits and group events
    + in retrospect the 40mm is ok, and helps for casual shooting, but fall short in many ways. Capable of some nice images but usually very bland. The 24-105 does seem good for the range and IS but not sure I like the image quality/ the speed (f4)/ and the handling is big and clunky.

    >> Canon EF 24-105mm f/4 L IS USM (about $900)
    or cheap >> Canon EF 28-135mm f/3.5-5.6 IS Image Stabilizer USM Autofocus Lens (a cheap kit lens, 300$ though looks functional)

    Canon EF 70-200mm f/4.0L USM (about 600$ and very useful, though huge)

    Rokinon 8mm T/3.8 Fisheye Cine Lens for Canon – $350 Very wide and Cine made

    the Rokinon, Samyang, and Bower lenses that feature fully manual focus and iris components.

    +++

    TOP:

    1. Canon 24-70mm zoom
    2. 70-200 zoom
    3. Tokina 11-16mm

    Canon Zoom lens – 70 mm – 200 mm – F/2.8 – Canon EF $1200this was recommended by Tom and as a great all around lens.
    Zeiss ZF lens 21mm – 1800 suposed to be the sharpest and most glass in a 21 mm. Looks like really beautiful image maybe too surgical sharp though?
    // Canon EF Macro lens – 100 mm – F/2.8 – Canon EF – $1000Some version of this 100mm macro is what was used a lot on House, the TV show. Seems to be very popular.

    Others:
    Canon EF 24-70mm f/2.8 L USM Lens
    this looks like a more practical and high quality lens. Very large and not convenient but a good general shooting lens for quick situations that require improv shooting.

    Zeiss 85mm f/1.4 Planar T* ZF.2 $1,283.00 / 8180 RMB (got this for 6400)

    +

    AFFORDABLE VARIOUS

    // Bower 500mm f/6.3 Manual Focus Telephoto T-Mount Lens ($170. slow but cheap and not too big)
    X – Voigtlander Color Skopar 20mm f/3.5 SL-II Aspherical Manual Focus Lens ($600 image looks beautiful)
    Or this long huge one. cheaper:Bower 500mm f/8 Manual Focus Telephoto T-Mount Lens

    http://www.bhphotovideo.com/c/product/635278-REG/Bower_SLY500P_500mm_f_8_Manual_Focus.html

    RESEARCH

    Voigtlander Nokton 25mm f/0.95 Micro Four Thirds Lens BA259M
    $994 online (not compatible, but looks great)

    Zeiss 50mm f1.2
    Canon FD 50mm F/1.2 L Lens *EX+*
    (not very necessary for me as I have a Nikon)

    Tokina 11-16mm  A functional super wide lens. “Please Note
    The lens is designed for Digital cameras with APS-C sized CMOS and CCD sensors, not designed for cameras with Full Frame sensors.”

    CANON ZOOMs
    One of my favourite L series zoom lenses is the 24-105 f4 IS. Nice range and IS although a little on the slow side. It’s one of my favourite interview lenses.

    14mm F2.8 II is the most amazing wide angle lens I have ever seen. Or the 16-35mm F2.8L (super expensive! ~$2000)

    Canon EF Wide-angle lens – 24 mm – F/1.4 – Canon EF $1500

    24-105mm f/4L IS 07 July 2007 7/7/7

    Zeiss ZE (The ZF’s are Nikon mount)

    Zeiss 85mm F1.4 (good portrait lens. very sharp and good defocus image)

    WIDE:
    Canon 24mm F1.4L and Samyang 24mm F1.4. (expensive)

    There are other options like the Canon 28mm F1.8 or Sigma 24mm F1.8 for around $500

    +
    Nikon 20mm f/2.8 (about $400 used online.

    Wideangle Lenses
    Angle of View (degrees, Hoizontal)     35mm
    “full frame”     APS-C “crop”
    Normal lens     39.6     50mm     31.3mm
    Normal-wide     54.4     35mm     21.8mm
    Wide     65.5     28mm     17.5 mm
    Very wide     73.7     24mm     15mm
    Super wide     84     20mm     12.5 mm
    Ultra wide     96.7     16mm     10mm

    | Style : Background0, Font0, Size16 |

     
  • s 9:22 PM on 130215 Permalink | Reply
    Tags: buy, , ,   

    HDMI deck recorder 

    http://www.blackmagicdesign.com/products/hyperdeckshuttle/

    $400 for uncompressed out of the 5DmkIII
     
  • s 9:11 PM on 130215 Permalink | Reply
    Tags: , ,   

    5Dmk3 Custom Modes 

    huge advantage of Canon over Nikon, especially over the ergonomically primitiveNikon D800 and D800E, is having three complete and total camera-state preset positions on the mode dial. Once programmed, everything about the camera’s settings are instantly recalled as soon as you turn on the camera, or move the dial to that position.

    These are of incalculable value for recalling different setups for different situations. I use one for landscapes, and one for family. Maybe you’ll use one for indoor night shots, and another for soccer. Unlike Nikon’s bogus “settings banks,” Canon’s C1, C2 and C3 recall everything, recall with the flick of a knob, and are usually locked so they don’t get reset by accident.

    Think of these C1, C2 and C3 settings as Camera 1, Camera 2, and Camera 3. It’s like having three cameras around your neck, while only having to carry one.

    For instance, since everything is recalled instantly, complex setups are easy to use immediately. I disable my external flash from firing in the menus so I can leave it turned on to use its red AF assist light in the dark without using flash in one C mode, while I let it fire in the other setting. This way it’s easy to focus my nightcapes in total darkness without having the flash fire in C1, and in C2 for family, the flash works as usual.

    The 5D Mark III is the world’s best camera for when you’re shooting more than one kind of thing. If I’m shooting in Yosemite Valley, and suddenly my kids do something cute, I can keep my eye on the finder as I turn the camera, and in one click of the mode dial by feel, I’ve reset everything about the 5D Mark III to my own personal preset for kid’s action pictures, as opposed to the settings I was using a second before for grand landscapes.

    Sure, if all I shot were sports, news or action, the Nikon D4 is a much faster, tougher professional camera for twice the price, and if all I did was shoot in a studio all day the Nikons are better because they allow easy in-camera 4:5 cropping, and if just want family pictures, the Fuji X100 weighs far less and works better in weird light, but when I want take one camera to do the work of all these at the same time, the Canon 5D Mark III is unbeaten.

    The Nikon D800 is nice if you only shoot one thing, but a pain because you need to reset everything for every different shot.

    Each of the 5D Mark III’s C settings recalls everything about how you have your camera set: sharpening, color, saturation (and every setting for every one of the ten presets in the Picture Controls menu), self timers, LCD brightness, time-out settings, autofocus settings, P Tv Av M exposure modes, resolution, file format(s), advance, metering, exposure compensation(s), white balance, WB tweaks, how many files the playback jumps when you move the top dial, everything in every menu, everything. The 5D Mark III instantly changes all of its settings as you click from one C setting to the other.

    If you reset a few things to something screwy and want to return to your preset preset, simply turn the knob away and back to the C setting you desire, and it’s all as you preset it. You can select these by feel without taking your eye from the finder. If you set something screwy for one shot, don’t worry: after the camera times-out in about a minute (also selectable in a menu), when you wake it for the next shot, it’s back where you preset it. Never again will you make the first shot of the day at ISO 51,200 and 2,500K WB from the night before.

    Each of these settings remains unchanged until you save a different set of settings to that dial position.

    New on the 5D Mark III is that you can choose to have these settings automatically update as you change the settings, as Nikons do in their settings banks. Set this way, when you leave one setting, it will be as you left it when you return. This is handy for when you first get the camera as your preferences finalize, but I’d set it back to its default of fixed after you get comfortable.

    If you save the same thing to two locations and set “auto update,” they both update until you change something in just one of them.
     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel