Updates from February, 2013 Toggle Comment Threads | Keyboard Shortcuts

  • s 3:11 PM on 130222 Permalink | Reply
    Tags: ,   

    Warning: preg_match_all(): Compilation failed: invalid range in character class at offset 7 in /nfs/c01/h08/mnt/31572/domains/book.kmov.org/html/wp-content/themes/p2/inc/mentions.php on line 77

    Tutorials Main | Motionworks.

  • s 4:29 PM on 130221 Permalink | Reply

    FREE Online Stock Video Sites 

    Warning: preg_match_all(): Compilation failed: invalid range in character class at offset 7 in /nfs/c01/h08/mnt/31572/domains/book.kmov.org/html/wp-content/themes/p2/inc/mentions.php on line 77

    20 FREE Online Stock Video Sites! | Premiumbeat.com.

  • s 10:35 AM on 130218 Permalink | Reply
    Tags: , ,   

    Universal Subtitles Tool 

    Warning: preg_match_all(): Compilation failed: invalid range in character class at offset 7 in /nfs/c01/h08/mnt/31572/domains/book.kmov.org/html/wp-content/themes/p2/inc/mentions.php on line 77


    Universal Subtitles is an online subtitling/captioning tool for web videos. My colleague Bryan Nunez commented on the potential uses of the service in this post. You can use Universal Subtitles to translate videos that already exist online, e.g, on YouTube or Blip.tv, regardless whether they are in your account or someone else’s account. You can watch a step-by-step video tutorial here that demonstrates how to use the subtitling interface.

    Once the translation is finished, you can (1) share the video with the subtitles by embedding it in a web site, blog post, or a social networking site. Alternatively, (2) you can download the subtitle track to use locally on your computer. The subtitle track is available to download in several formats: SRT, SSA, SBV, DFXP, etc.

    In this post, I will go over the second of the above two options – the various ways you can make use of the downloaded subtitle track. [flickr id=”6871166605″ thumbnail=”small” overlay=”true” size=”medium” group=”” align=”right”]

    I. We most recently used Universal Subtitles to create Arabic subtitles for a training video. I will add a link to it here once the video gets published. Once the subtitles were done by a remote volunteer translator, I downloaded an SRT file from Universal Subtitles and uploaded it to the YouTube account where the video lives (learn how). This way, the translation lives together with the original video and it is available to access directly on YouTube via the CC button, or it can be embedded in a web site. The advantage of embedding via YouTube is that, unlike Universal Subtitles, YouTube does not use Javascript to generate the embed code – Javascript is viewed as a security risk by some platforms.

    [flickr id=”6836521551″ thumbnail=”small” overlay=”true” size=”medium” group=”” align=”left”]

    II. Alternatively, you can use the SRT file with VLC player to play the video with the subtitles locally on your computer.

    Both YouTube and VLC automatically format the subtitles – font, font size, line breaks, etc. Notice how different the same subtitle looks in the two screenshots.

    Automatic formatting works pretty well in most cases. However, translating specialized human rights language usually results in more text than the original English. So, it’s a good idea to format the translated text for an optimal viewing experience.

    However, when I tried to open the SRT file for editing on my computer the Arabic script did not show correctly. To fix this problem, I used a tool called TextWrangler to change the font encoding to Unicode (UTF-16). [flickr id=”6871004135″ thumbnail=”small” overlay=”true” size=”large” group=”” align=”right”]

    III. Now, with the Arabic script showing correctly, I was able to import it in a tool such as Submerge to create a version of the video with the subtitles burned in the image. However, Submerge has limited text formatting options.

    IV. The best way to format the text is to bring it into FinalCut, Premiere, or some specialized subtitling software. However, bringing subtitles into FinalCut Pro is not as straightforward as importing an SRT file to Submerge. To import the subtitle track in FinalCut, you need a specific type of XML file called XML Interchange Format.

    [flickr id=”6836189381″ thumbnail=”small” overlay=”true” size=”medium” group=”” align=”left”] I used a tool called Title Exchange to convert the SRT file (the file I saved with Unicode (UTF-16) font encoding) to XML for FCP. (Remember, I only had to change the font encoding because my subtitles were in Arabic – Latin and Cyrillic scripts should work straight forward). Read instructions on how to create XML for FCP with Title Exchange.

    Then, I imported the XML into FinalCut Pro to edit and format the subtitles for optimal viewing. [flickr id=”6836777553″ thumbnail=”small” overlay=”true” size=”medium” group=”” align=”right”]

    From FinalCut, you can either export a QuickTime with the subtitles burned into the video image or export the subtitle track as an XML file, then use Title Exchange to convert it to STL, a format that is not currently offered by Universal Subtitles, and import it into DVDStudio Pro for DVD authoring. Watch this video tutorial.

    V. Alternatively, you can import the XML file in Adobe Premiere. Also, you can use Title Exchange to convert the XML file to Adobe Encore text file for DVD/Blu-ray authoring.

    Universal Subtitles is a very useful tool for crowd-sourcing translation and subtitling of online videos and we would love to see some additional features that would simplify the above described process – options for text formatting in the subtitling interface – line breaks, font, font size, etc., also, some additional subtitle formats: STL, XML for FCP/Premiere, and Encore text file.

  • s 8:48 PM on 130217 Permalink | Reply
    Tags: ,   

    5D Mark III AF points & area selection 

    Warning: preg_match_all(): Compilation failed: invalid range in character class at offset 7 in /nfs/c01/h08/mnt/31572/domains/book.kmov.org/html/wp-content/themes/p2/inc/mentions.php on line 77


    The EOS-1D X and EOS 5D Mark III share arguably the world’s most sophisticated AF system, with an entirely new 61-point array, and a host of configuration options that tailor it for nearly any professional photographer’s needs. There are many new aspects of this terrific new AF system, so we’ll discuss them in separate articles here on Canon’s Digital Learning Center starting with the camera’s AF points and area selection options.

    Basic design goals of this new AF system are improved low-light AF performance, superior AF accuracy, and ability to achieve true high-precision AF with pro-grade f/4 lenses, such as the 24-105mm f/4L IS, 500mm f/4L IS and 600mm f/4L IS.

    Number of points, and area covered:

    The two cameras indeed have 61 AF points, the most ever in a Canon EOS SLR camera. But the new 61-point High Density Reticular AF is impressive not only for the sheer number of AF points, but for the way they’re laid-out, and the ways they can be used.

    Side-to-side, the AF point array of these full-frame cameras covers a noticeably wider area of the viewfinder – nearly 53% of the horizontal width of the full-frame imaging area (vs. about 41% coverage on cameras like the EOS-1Ds Mark III and EOS 5D Mark II). The spread points is a full 19mm of the traditional full-frame 36mm image width. This added coverage makes it even easier to use outer AF points to focus upon off-center subjects. Top-to-bottom coverage remains at 8mm, the same as on the previous EOS-1Ds Mark III camera.

    Much like the EOS 7D camera, the AF points are displayed in the viewfinder using a transparent LCD overlay. This allows great flexibility in what is displayed at any given time to the photographer. While details of this sophisticated viewfinder display will be explained in depth in a separate article, the important take-away here is that it opens the door to the tremendous range of options available in terms of how those 61 AF points are ultimately used.

    Of the 61 AF points, 41 points are cross-type AF sensors (all the points in the taller center area, and the central ten, running vertically, in the shorter left and right point clusters). This surpasses the AF layout of competitive-brand SLRs with 51-point AF systems, where only the central 15 points offer cross-type design. Again, the characteristics of cross-type AF points will be covered in greater detail in a separate Digital Learning Center article.

    Finally, with 61 densely-packed AF points, photographers who prefer to use a single AF point will find less likelihood than ever that there’s no AF point right at their desired location. This can be especially significant to users who prefer to shoot with a tripod from time to time.

    AF Area options:

    It’s here that users really can experience the power of the 61-point High Density Reticular AF system in the EOS-1D X and EOS 5D Mark III. Like the previous EOS 7D camera, you’re not limited to simply using a single AF point, or alternatively letting the camera automatically select the point for you. The size of the actual AF area used for focusing can be changed at any time, as follows:

    • Single-point AF (manual selection)
      This is the type of AF operation familiar to most serious shooters. Pick any one AF point, keep it upon your subject, and the camera uses that AF point – alone – to continue to read subject detail and focus upon it.
    • Spot AF (manual selection)
      First seen in the EOS 7D, you now take any one AF point, and reduce its size even further. This can be useful when the photographer really wants to pin-point the sharpest focus on a tiny part of a large subject, or shoot through foreground objects (such as tree branches and leaves, for instance).
    • AF Point Expansion – 4 points (manual selection)
      The opposite of Spot AF: instead of making a single AF area smaller, you now expand its size by adding four additional surrounding points (normally, the points above, below and to the left/right of the primary point you’ve selected). This gives a larger, moveable cluster of active AF points, and is especially useful if the primary, central point in the cluster suddenly sees a part of the subject with little detail or contrast.
    • New: AF Point Expansion – 8 points (manual selection)
      An even larger, moveable cluster of AF points. A 3×3 square-shaped group of AF points, with eight points surrounding the primary user-selected point. Can be manually moved anywhere around the AF area, from center to any of its edges. Again, potentially very useful for subjects that may move unpredictably, or for instances where the primary AF point may occasionally pick-up plain, non-detailed areas of subjects.
    • Zone AF (manual selection of zone location)
      Select one of 9 available fixed clusters of AF points, with either 9 or 12 points grouped together, depending on whether it’s centered or off-center in the 61-point array. Within that zone of active points, the camera will automatically focus upon the nearest detected subject, as long as it has adequate detail. This is different than AF point expansion, which relies on the user picking one primary point, and adding additional assist points surrounding it. Zone AF can be especially useful when there are a group of moving subjects, and you know you want to have sharpest focus on the closest one.
    • Automatic selection (all 61 points active)
      Camera automatically chooses the active AF point(s), with all 61 points available. In One-shot AF mode (stationary subjects), camera will focus on nearest subject with adequate detail, similar to all previous EOS models with multiple AF points.

      In AI Servo AF, as with the EOS 7D, user manually picks any one point as the starting point to track a moving subject; it can be centered or off-center. Once subject is being tracked, if it moves away from the starting point, other points will actively continue to track subject, and the viewfinder continually updates to show which AF points are active (this can be turned off if the shooter finds it distracting).

    Memorize and instantly return to a pre-determined AF point

    Navigate to any AF point (can also be Spot AF point, or an Expanded AF point), “register” (memorize) it, and then move to any other AF point or points and continue shooting. Press a configurable button, and the EOS-1D X or 5D Mark III instantly returns you to the memorized AF point.

    The process is pretty simple: to memorize an AF point, be sure the camera’s not set for Zone AF mode or Automatic AF point selection. Move the active AF point(s) to wherever you’d like to memorize, and press and hold down the rear AF point select button, and simultaneously press the ISO button button (EOS-1D X) or top panel illuminator button (EOS 5D Mark III). “HP” (Home Position) appears briefly in the finder, and the point is now memorized. Repeat the procedure to memorize a different point. (Only one location at a time can be memorized.)

    To jump back to a memorized point, any of the buttons listed immediately below can be configured to switch to the registered AF point, using the camera’s Custom Controls menu. Enter the Custom Control menu for any of these buttons, highlight an AF option, and you’ll see “INFO – Detail set” on-screen. Press the INFO button, and in the resulting new menu screen, highlight the icon with “HP” and press SET to lock it in – you’ve now set that particular control to instantly return you to the memorized AF point.

    • AF Start button
    • AE Lock button
    • Depth-of-field preview button
    • Lens AF stop button (buttons on select Canon EF super-tele lenses only)
    • Multi-function button 2 (EOS-1D X only)
    • Multi-controller

    Once you’ve configured any one of these controls to return you to your registered AF point, you’re free to move to any other AF point and start shooting. Whenever you want to jump back to the AF point previously memorized, just press the appropriate button.

    Automatic AF Area switching for horizontal and vertical shots

    This was introduced in the EOS 7D camera, and carries over to the EOS-1D X and 5D Mark III. It’s called Orientation Linked AF, and it’s activated via a setting in the fourth AF menu screen.

    Once activated, you can select any of the 61 AF points (or any of the available AF Area options) with the camera held horizontally. Then, turn it vertically, and you can select a different AF point, or even a different AF Area mode (such as Zone AF for vertical shots, and Spot AF for horizontals).

    Now, whenever the either camera is held horizontally, the point or AF Area you selected for horizontals will be active. And, when turned vertically, the camera will instantly change and select the point or AF Area you’ve pre-set for vertical shots. You don’t need to press or turn anything (aside from the camera!).

    This feature is ideal for users who quickly have to change compositions from horizontal to vertical, particularly for those users who want to go beyond simply using the center AF point all the time.


    The EOS 5D Mark III and EOS-1D X are a lot more than just cameras with 61 AF points. Their innovative AF system allows photographers to begin to tailor it to their needs by managing those 61 focus points, changing not only the location but also the size of the active AF area. Whether the user wants to sample just a small area of a subject for precise focus, or use a wide area to accommodate unexpected subject movement, there are choices available to get the job done.

    The AF points themselves cover a wider area of the picture than on any previous full-frame digital SLR camera, making it easier than ever to compose on subjects to the left or right of center.

    While there’s certainly more to this AF system than its AF points, any understanding of the power of these two cameras has to begin with an appreciation of the options available to not only pick the point you want, but perhaps more significantly, quickly move to another point. From here, we can examine other important aspects of this stunning new professional AF system.

  • s 7:29 PM on 130217 Permalink | Reply
    Tags: , ,   

    Warp Stabilizer Settings For Adobe Premiere and After Effects 

    Warning: preg_match_all(): Compilation failed: invalid range in character class at offset 7 in /nfs/c01/h08/mnt/31572/domains/book.kmov.org/html/wp-content/themes/p2/inc/mentions.php on line 77

    The Best Warp Stabilizer Settings For Adobe Premiere and After Effects CS5.5 and CS6 | Who Is Matt? Matt Johnson Productions.

    Most shaky footage comes from a lack of control of the camera and is especially prevalent in DSLRs due to their small size.  The form factor and weight don’t lend themselves to a steady shot which is why you often see DSLRs decked out with full shoulder rigs, weights, and setups that resemble something more appropriate for fishing than stabilization.  With the popularity of DSLRs as well as the smaller sizes they are making cinema cameras these days, it makes sense that they would need help in software if you want to have any hope of shooting handheld.

    One of my favorite new effects included in Adobe After Effects CS 5.5, CS6, and Adobe Premiere Pro CS6 is the Warp Stabilizer.  For many years if you had shaky footage your only option was to either spend hours tracking a moving object in After Effects with keyframes in the hopes of it working properly, or learning how to use an expensive plugin software such as Mocha.  Thankfully, Adobe realized there was a need for a much quicker solution that would work for the majority of the clips being filmed in the world today.  Thus, Warp Stabilizer was born and now stabilized footage is only a quick click away.

    The good news is that Warp Stabilizer’s default settings work for the majority of the clips that you throw at it.  If you have a decent clip it will usually make it great, and if you have a great clip with maybe a slight bump in it, (think slider with an uneven bit of railing) it will make it look perfect.  All the computing, tracking, and general analyzing happens in the software and you end up with a great clip in around 1 minute.  But, this post isn’t for those people that just throw it on and have it work.  This post is for two kinds of people, those that like to tinker and want the best possible looking clips with ultimate smoothness and stabilization, or those that have thrown the Warp Stabilizer Effect on a clip and had it result in Jello, distortion, and rolling shutter.

    I found that I often deal with Jello and distortion on my clips when I am shooting handheld and if my camera rotates even a slight bit.  I believe this Jello distortion is due to the way the Effect software analyzes the clip.  Simple explanation: Warp Stabilizer actually analyzes the entire clip in 3D space and is able to tell which objects are in the foreground and background.  Sometimes it has issues with differentiating which is where I believe the Jello distortion becomes evident.

    The following are the settings I would recommend trying out if you are wanting to remove the Jello distortion effect from your clip.  These settings are applicable to both Warp Stabilizer in After Effects CS5.5 and CS6, as well as Premiere Pro CS6.

    To add Warp Stabilizer to your clip in After Effects CS5.5 and CS6, select your layer that you want to apply it to, and go to “Effect > Distort > Warp Stabilizer.” In Premiere Pro CS6, select your clip you want to apply it to and go to your“Effects” window and select “Video Effects > Distort > Warp Stabilizer” or search for it in the Effects search box.

    I will go through them in the order that I usually try when I run into problems with Warp Stabilizer.  Each clip you film will be unique and there is no guarantee Warp Stabilizer will treat each one the same.  While it is always better to film your footage as stable as possible, having the ability to fix your clips that have problems is wonderful.

    Settings to Fix Jell0 and Distortion in Warp Stabilizer

    By default, Warp Stabilizer chooses “Smooth Motion” – 50%, with a method of “SubSpace Warp.”  Your video borders framing will show “Stabilize, Crop, Auto-scale”.  If you’re running into problems of your clip becoming distorted and looking like Jello, I would recommend the following methods to try and clean it up.  If one does not work, try the next until you are satisfied with your clip.

    1. Click the “Advanced” arrow and check the “Detailed Analysis” box.  This will require you to re-analyze your footage and it will take longer than before, but sometimes this is a quick fix.

    Detailed Analysis

    2.  Click the “Advanced” arrow and adjust the “Crop Less <-> Smooth More” percentage from “50% down to 5%”in increments of 10.  For example, change it to 40%, let it stabilize, then check the footage if its improved.  Each time you lower this percentage the video will become a bit more shaky, but it will introduce less jello into the image.  It is helpful to turn this down if you have just a slight amount of shaky-ness (perhaps due to handholding your camera), and you want to smooth it out.

    Crop Less Smooth More

    3.  Click the “Stabilization” arrow and change “Smoothness” from 50% to 5%.  This reduces the smoothing that Warp Stabilizer will attempt to apply to your clip, and while it will result in a slightly more shaky shot, I find that my shots often don’t need that much smoothing.  This often cuts out a lot of the distortion and Jello effect.  


    4.  Click the “Advanced” arrow and change “Rolling Shutter Ripple” from “Automatic Reduction” to “Enhanced Reduction.”  This setting is usually only helpful when dealing with Rolling Shutter introduced from the CMOS sensors used in DSLRS and other popular digital cameras, but it doesn’t hurt to try using it.

    Rolling Shutter Ripple

    5. Click the “Stabilization” arrow and change “Method” to “Position.”  Then click “Borders” and change “Framing”to “Stabilize, Synthesize Edges.”  With this setting, Warp Stabilizer will actually create new edges for your footage from existing pixels.  As long as it isn’t being forced to make up too much information it usually does this very well.  The tradeoff is that I almost always have to render my clips before viewing them because of the enhanced processor power required.  Try using Synthesize Edges while changing the Smoothness percentage.  This usually fixes the Jello/distortion in my shots when nothing else will.

    Synthesize Edges

    Hopefully by changing these Warp Stabilizer settings your video will look distortion and Jello free.  Keep in mind though that each video clip is different and will require a different technique.  There are plenty of other settings to tweak when using Warp Stabilizer, be sure to experiment with them as well.  Let me know in the comments below if you find another great Warp Stabilizer technique.

  • s 7:27 PM on 130217 Permalink | Reply
    Tags: , , ,   

    CS6 Premiere Crop on Export 

    Warning: preg_match_all(): Compilation failed: invalid range in character class at offset 7 in /nfs/c01/h08/mnt/31572/domains/book.kmov.org/html/wp-content/themes/p2/inc/mentions.php on line 77


    When exporting for streaming or viewing on a computer such a YouTube, Vimeo, etc. you will want to click the “eye” on the “croplines” track and make it invisible.  Then you will go to File>Export Media and create a custom render setting using h.264 at 1920×817.  This will just result in a squished video if you do not set the export to crop the video file as well.

    Under the “source” tab in the top, left click the crop button and change it to “Top: 132, Bottom: 131″ – leave the Left and Right at 0.  This will crop your video in the same way as using the croplines did but will result in it being an exact fit.  For some reason if you leave the croplines on your videos on vimeo, it will have extremely small black bars visible on the top and bottom if you do not do this.  Theoretically you could just do this and not bother with using the “croplines” PSD file as a track in your editing but then you would miss out on it as a guideline to help you figure out what is visible in your shots.

    DVD and Blu-Ray: For DVD and Blu-Ray, export as you would normally with the croplines visible.  Whatever resolution you export at, the croplines will be visible and work to create a 2:35:1 aspect ratio for your footage.  Note: In some cases when burning DVDs, specifically with Adobe Encore, I have run into an issue where the footage would overflow the edges of the croplines, creating a weird effect where the viewer could tell that the croplines were just a layer in the footage.  To fix this, when I am editing and planning on rendering specifically to DVD, I select the “croplines” track in Premiere Pro after importing it into the sequence, and select “motion>scale” and change the scale from “100.0″ to “101.0.”  This prevents this footage overflow effect where it is visible at the edges of the croplines.


  • s 10:35 PM on 130215 Permalink | Reply
    Tags: computer,   

    greenscreen keying technique 

    Warning: preg_match_all(): Compilation failed: invalid range in character class at offset 7 in /nfs/c01/h08/mnt/31572/domains/book.kmov.org/html/wp-content/themes/p2/inc/mentions.php on line 77

    you may be seeing keylight’s despill efforts, where it tries to remove any green screen color that spills on the subject from the screen. this often looks a bit like noise that gets added to the subject.

    to double check that that is the issue, toggle the ‘view’ from final result to intermediate and see if the problem persists (at the possible expense of green spill on the subject).
    if you still want to suppress spill but try and lessen then noise that the spill suppression is causing, often setting the replacement method (in screen matte settings) from soft color to hard color can help.
    it essentially uses 2 instances of keylight, the first to create a core matte (it calls inside mask), the second to produce the key.

    another good technique is aharon rabinowitz’s ‘super-tight junk mattes’ technique that you can find in the ae tutorials here at the cow.
    and you can use both techniques on the same key to really define the area that will be affected by keylight.
    for more complex spill suppression situations, andrew devis also has a tutorial here.
    you can also find several techniques and tutorials here (and on the web) for creating light wrap when you are compositing your keyed elements into a shot/scene, which will usually really help to make it look natural.
  • s 9:55 PM on 130215 Permalink | Reply
    Tags: , , ,   

    Lenses : Cine vs Still 

    Warning: preg_match_all(): Compilation failed: invalid range in character class at offset 7 in /nfs/c01/h08/mnt/31572/domains/book.kmov.org/html/wp-content/themes/p2/inc/mentions.php on line 77


    – : http://matthewduclos.wordpress.com/2011/10/07/why-cinema-lenses-cost-so-much/

    Basically, everything boils down to two categories; usability and image quality. Obviously there are other factors involved such as production quantity, but that is usually tied into image quality.  Again, the question is, why is a cinema lens so much more expensive than a still photo lens? Cinema lens prices increase exponentially as the quality increases. For this demonstration, the top of the price spectrum will be represented by the Angenieux 24-290mm Optimo, and the bottom will be represented by the Nikon 18-55mm kit lens. Some would expect a few test shots with some text overlaid on them similar to that of most online lens reviews (mine included), but this really doesn’t show much beyond very basic image quality. To be honest, with todays manufacturing processes and techniques, the overall image quality in the center portion of each example lens, would probably be fairly similar. That doesn’t mean that the next big feature film is going to go out and shoot on a Nikon 18-55mm, but it also doesn’t mean that an 18-55mm Nikon isn’t going to produce good results. This is where the usability of each lens comes into play. For example, the entire core, focus, zoom, lock rings, and housing of the 24-290mm Optimo are machined from billet aluminum. The only part of the Optimo that isn’t made of high quality aluminum is the mount… Because that is made of stainless steel. Comparatively, the Nikon 18-55mm does in fact have an aluminum core, but everything else is plastic and brass, which can be good. It keeps weight and production cost down to a minimum, but is devastating to mechanical accuracy and precision. It doesn’t mean that the Optimo is the better lens for every situation. I wouldn’t want to lug a 25 lb. lens around Disneyland to snap pics of the family with Mickey Mouse. This leads me to the fine details such as stability and accuracy. Cinema lenses are not auto focus and traditionally require a trained focus puller to nail focus in any given shot. This isn’t done by peering through the viewfinder or pressing a button. It’s accomplished by taping out the distance to the subject and then dialing in the measured distance on the lens’ focus scale, which means those marks better be accurate or someone is losing their job. Focus mark accuracy isn’t really a concern on still photo lenses since 99% of users simply depress the shutter button half way and let the cameras auto focus do the work. The other 1% of users who focus manually for still photography, usually look through the viewfinder, pick a subject and adjust the focus ring until it looks sharp, still no need for focus mark accuracy. Nobody sets up their SLR, tapes out the distance, adjusts the lens to that distance and snaps away. It’s just to realistic.

    Speaking of focus, image shift and breathing are two more features that are critical in motion picture lenses, but not so much in still photo lenses. Let’s take our 18-55mm Nikon lens, put it on a camera, look through the monitor and rack focus or zoom. The whole image jumps around and loses focus because the components used inside the lens are very light-duty and left very loose to allow the tiny little drive motors to auto focus the lens for you. Comparatively, our 24-290mm Optimo is built with solid aluminum components that are precisely fitted and adjusted to keep everything as tight as possible. This keeps everything extremely smooth and accurate. If you adjust focus or zoom, the image should stay dead center and solid. This kind of performance requires extremely tight tolerances during machining and a very high level of care during assembly. Focusing with just about any still photo zoom lens will create a “breathing” effect that is simply an optical design characteristic. There is no adjustment for this flaw within the lens. It’s part of the optical-mechanical design and is taken into consideration during the development of a lens. Breathing is a bad thing in cinema because it really pulls the audience out of the scene. It changes the field of view of the lens and appears as though the lens is zooming in and out during even a small focus pull. This is why cinema lenses are designed not to breath and add substantially to the cost in order to do so. Tracking is somewhat related to breathing as it can really ruin ascot if not calibrate. Tracking is the movement of the image relative the the sensor/film, while zooming. Ideally, zoomed all the way in, an object in the very center of the image should stay in the exact same position on the sensor/film throughout the entire zoom range. Most cinema lenses include internal adjustment to calibrate tracking while still photo lenses aren’t concerned since you can simply re-compose before each shot.

    Another common characteristic of still photo zooms is their speed, or maximum aperture. Take our 18-55mm Nikon for example, again… The maximum aperture is f/3.5 which isn’t too bad. But as soon as you start to zoom, it looses light and stops all the way down to an f/5.6. Modern SLR cameras can easily compensate for this with automatic adjustments to exposure with the shutter speed or ISO. The 24-290mm is comparatively very fast at T2.8 and maintains its maximum aperture throughout it’s entire zoom range. Mostly because it’s an annoyance to think about adjusting setting from shot to shot and trying to match everything, but also because it would look horrible if the aperture started to close down in the middle of a shot, ruining the lighting, look and feel of a scene. Okay, there are plenty of still photo lenses that maintain a constant aperture. In fact, most of the major pro lenses will do this easily. But these are usually a fairly short zoom range. Do the numbers… Take the 14-24mm Nikkor, a great lens with a constant f/2.8 aperture, the zoom range is only 1.7x. The 24-70mm, a 2.9x. And the 70-200mm, a 2.8x zoom. Those three lenses are Nikons current crop of pro zoom lenses. The Angenieux 24-290mm maintains the same constant T2.8 aperture throughout it’s 12x zoom range. That’s almost unheard of in still photo lenses. These couple of characteristics can be lumped into the optical quality of the lens but also effect the usability. Another usability concern for motion picture lenses is their durability. Granted, if a cinema lens is dropped, it’s almost certain that it’s thrown completely out of whack and would require re-calibration, they are built like tanks. The same can not be said for our little 18-55mm Nikon friend. However, there are a lot of modern still photo lenses that are built to endure relentless usage and can really take a beating. All of these details are very minor on paper. It’s when you really get into the nitty gritty and use the lenses on a daily basis that you realize the differences can be substantial. Kind of like looking at two different cameras on paper. Each camera has a 3″ LCD screen, shutter speed, aperture, and ISO adjustments, an SD card slot, compact and portable, and includes a strap! One is a Leica, the other is a Kodak. Both are great cameras, but they are clearly meant for different purposes and clearly have a cost difference. The same logic applies to still photo lenses and cinema lenses. I like to think of it this way: Still photography offers a moment of interest. Cinema demands sustained attention.

    0 : http://www.fredmiranda.com/forum/topic/1104890

    Compared to stills lenses, cine lenses:
    have much more rugged mechanics, with thicker barrel walls, etc. Reliability is more important, and low weight less important, than for stills lenses. Greater mechanical stability is also needed for mounting accessories on the lenses.
    have standardised housing dimensions as far as reasonably possible. This allows accessories such as matte boxes and lens motors to fit all lenses in the range, and means the lenses within a range are easier to work with, since the position of the focus and iris gear is the same across all lenses.
    have toothed rings for attaching motors or other focusing and iris-control devices. On many modern cine lenses, these rings don’t move when the lens is focused.
    are made so that the image remains perfectly still when the focus ring is rotated, with no tilt, rotation, or shift from mechanical play.
    have stepless iris controls for smooth adjustments while filming.
    have more iris blades, for a rounder aperture when stopped down.
    have a much longer focus-ring rotation, with distance marks (witness marks) calibrated for each lens, and many more witness marks than stills lenses. This means you can measure the distance to a subject with a tape measure, and then focus precisely by scale for that distance. The distance marks are sometimes placed on interchangeable (or reversible) rings, with metric or imperial units (rather than both). So if the focus puller prefers to work in metres, he or she won’t be confused by irrelevant feet markings, and vice-versa.
    have larger and brighter markings (sometimes fluorescent) for better legibility on dim sets.
    have more precise colour matching across the lens range.
    are often faster, e.g. the Master Primes are T1.3.
    sometimes have less breathing. Really high-end lenses, like Master Primes, have practically no breathing (they were introduced with t-shirts saying “Breathless!” to make this point). The Master Primes achieve this with a dual floating-element design: the lens zooms while focusing to compensate for breathing. Mechanically, this is achieved with the use of machined cams rather than helicoid threads, which has another advantage: less variation in focus resistance in hot and cold temperatures.
    have typically less distortion, again to a greater extent at higher price brackets.
    have less vignetting at low f-stops.
    have greater resistance to flare, principally by sacrificing compactness while adding large stray-light baffles inside the barrel (and other light traps). Greater efforts are also made to eliminate the formation of ghost images, by adjusting the curvature and placement of the lens elements at the design stage. Obviously this has the knock-on effect of making aberration correction more difficult, which increases the design effort and manufacturing cost because the aberrations must nonetheless be corrected to a very high level.
    have service-friendly features such as easy-to-change front and rear elements, interchangeable mounts, back-focus adjustment features, etc.

    1 : http://matthewduclos.wordpress.com/2010/04/29/still-vs-cine-lenses/

    One might assume that a lens is a lens and you can simply adapt any lens to suit ones needs. This is usually a matter of changing or adapting the mount just so the square peg fits in the square hole. The fact is that still lenses and chine lenses are very different and can’t always be interchangeable. Still lenses are defined (in my opinion) as lenses that were designed and built for use with an SLR still camera whereas a cine lens would be one designed and built for use on a motion picture (movie) camera. I’ll go over why the two aren’t interchangeable and what can be done to reduce the differences between the two. Modern still lenses are designed for two things… Speed and ease of use.

    Nikon 85mm f/1.4 modified with focus gear for a follow focus and an 80mm front for common motion picture accessories. This particular lens also had its manual aperture de-clicked for smooth, seamless rotation.

    Manufacturers are always looking for a way to make the auto focus faster and simpler and over the past several decades this has been accomplished by making the focus components lighter and looser in order to make actuations easier for the tiny motors found in the lens or camera. The often plastic mechanics move in very loose, dry, and all together sloppy methods. The same can go for the zoom mechanics in a still zoom lens. This isn’t an attempt to make it easy for a motor, but just a fact of mass production at low cost. This isn’t a bad thing for a photographer taking still photos since the camera focuses nice and quick and then stops all adjustments when the photo is snapped at a fraction of a second. Another issue is that many new still lenses are abandoning manual aperture control rings for several reasons. The camera can control the aperture with no problem and it makes manufacturing cheaper. Lastly, still lenses continue to use focus distance marks, for the most part. But still lenses aren’t calibrated very well and the marks are often just a general guess rather than a reliable reference. Again, not a big deal if you are just depressing the shutter half-way to activate autofocus that doesn’t care what the distance is.All of these “issues” are only issues if you attempt to use still lenses to record motion. With the loose, easy mechanics, the image rendered by the lens on the film plane will jump around and jiggle if you try to adjust focus or zoom while recording. Nothing takes you out of a piece of art more than a jolt of motion similar to that of my moms video tapes of my school parade from 1990. Then there is the zoom. If you try to zoom or out while recording, forget it. Because still lenses aren’t calibrated and don’t hold focus, your picture will go from tac sharp to mush in a few millimeters. The lack of an aperture ring can be neglected since it’s still adjustable in the camera, but not always adjustable while recording. And even when a nice camera allows aperture adjustment while recording, you’re looking at adjustments in half or third stop increments that will simulate the exposure compensation that my phone exhibits.. Not pretty. There are a few other snags with still lenses that can be circumvented. The difference in standards is small, but detrimental. Still lenses don’t utilize external gears for use with a follow focus. Many people have turned to aftermarket add-on gears that simulate a focus or zoom gear. These can be garbage… Some of them use a block or clamp that interrupts the rotation and limits the user to a certain range.

    The closest alternative… Zeiss 85mm f/1.4 ZF, a prime lens that come so close to being a cine prime. With a solid aluminum housing and metal components it’s a great compromise.

    That just about sums up a majority of the modern still lenses for motion use but alas, there are a few remaining still lenses that are fairly well suited for motion. The first that comes to mind is the Zeiss ZF series lenses. They are completely manual lenses that feature a nice, solid metal construction that eliminates the common image shift and focus loss. And then there are older manual lenses from back when auto-focus was just a myth. But those are hard to find in good condition. That’s about as close you can get to a chine lens with a still lens. The major aspects that make chine lenses more expensive and higher quality are things like build faulty and materials. The tolerances used for designing and making a chine lens are much tighter than a still lens. The components in a chine lens are almost always metals and alloys. The mechanical designs have become extremely complex to avoid the dreaded image shift and to maintain proper calibration even with the severe abuse of modern Hollywood users. For example, a chine zoom will be a para-focal lens (maintains focus throughout zoom range) whereas still lenses can be vari-focal since you just refocus and snap the photo. This is important with a cine lens because the distances referenced on the focus scale are critical to the cinematographer and/or focus puller. These marks must be dead on every time or someone is going to have a heck of a time doing their job.

    A true motion picture lens, a Zeiss 85mm Ultra Prime T1.7 provides all the features one would need for shooting motion picture material. With a proper PL mount and superb design it stands tall against still lenses. However, its price tag stands out almost as much as its quality.

    2 : http://www.dvxuser.com/V6/content.php?103-Why-We-Need-Cinema-Lenses

    Color MatchingMany variables exist that effect the way a lens reproduces color. These variations are usually slight in nature, but important all the same. It is a well known fact that photography lenses are not designed to be color matched. Why would they? Color matching is another perfect example of why cinema and photography lens designs differ based upon how they are used. A photographer works with single independent images. A photograph is taken with one lens, it does not matter if other lenses in the photographers kit have unique characteristics. However, the cinematographer works with multiple shots woven and juxtaposed together to create an illusion of continuous time. When cutting between a medium-close up and an extreme close up, one can’t have the medium shot look neutral-cool and the close-up suddenly have a warm/pink tone. The inconsistency will either consciously or subconsciously weaken the illusion and possibly awake the viewer to the fact they are watching a contrived work of fiction. Cohesion of the image is incredibly important and the illusion must live on. Of course a modern day digital intermediate color-correction session can fix just about any lens color rendering inconsistency. Unfortunately such a process takes time and money. If one were to shoot an entire feature with mismatched lenses, there would be two choices: either release the film with bad color timing, or spend the money and effort to fix it in post. Color timing sessions can be well over hundreds per hour. There is enough work to be done in post. Matching lenses in post color correction when they could have simply been matched on set, is the last thing a production needs to spend money on.

    Chromatic Aberration
    Chromatic Aberration, also called CA, is the optical occurrence when a lens fails to bend all wavelengths if light equally. Light is made of many different wavelength frequencies that create the colors we see. A lens must capture incoming light then bend and straighten it to fall upon the film/digital sensor plane as straight as possible. When the optical elements within a lens bends the light, they can consequently act as a very mild prism and separate some wavelengths from others. These offset wavelengths will fall just slightly off from their counterparts resulting in a color fringing in the image. This is why aberration is a thin line of color. The color can change depending on which frequency the elements offset. As discussed above in the vignetting section, wide angle lenses have very extreme field of views. These lenses must take incoming light from very radical angles of incidence (thus more radical angles of refraction), and bend them toward the film plane without allowing any wavelengths to be slightly offset creating CA. Thus, chromatic aberrations are often found on the edges of wide angle lens frames.

    Front DiameterCinema lenses are often used in tandem with a mattebox system. Unlike photography lenses, which use screw on filters and built in lens hoods, cinema lenses use a mattebox to keep extraneous light from flaring the lens and to hold filters in front of the lens. By using a mattebox, a lens can be changed much faster without having to remove and reattach filters. However, when using a mattebox, it is extremely important to keep light from entering the mattebox from behind, thus either a bellows ring, doughnut ring, or clip-on back must fit perfectly around the lens front. By having a lens set with matched front diameters, the previously listed devices need not be switched out for different sizes, thus the lens change needs no additional actions. This saves time and reduces the amount of support gear needed.

    Although rare and extremely difficult, some select cinema lens sets have many focal lengths with similar or the same weight. Usually these are lenses in the typical range of lengths, as very wide or telephoto lenses have lens designs which often make them heavier in nature. Having similarly weighted lenses can help when the camera is on steadi-cam, a remote servo-head, in handheld mode, or any other delicate mounting operation when balancing the camera is very important.

    Focus/Iris Ring Placement and Gears
    Cinema lenses are designed to have geared focus and iris rings placed at the same point on the barrel for all focal lengths. Doing so saves the camera assistant time when changing a lens, as the follow focus module nor any FIZ motors will require being adjusted after every lens change, thus further saving time on every lens change. Additionally, photography lenses typically do not have geared focus or iris rings. They are textured as to provide a nice grip for the photographers hand, but are not geared as cinema lenses are. Geared focus and iris rings are a must if to be used with a professional follow focus or remote follow focus system.


    Zeiss Ultra Speeds is a great example of what is likely one of the most consistent lens sets in regards to physical build. Every lens between 16mm and 100mm is exactly 143mm in length, have a 93mm front diameter, and matching geared focus and iris ring positions. All lenses are consistent T-stop of T/1.9, and six focal lengths within the 24-85mm range have the exact same weight of 2.2 lbs.


    Zeiss ZE Canon lenses, a pretty nice photography lens set, is an example of how photography lenses are built for different types of use. Each lens is streamlined to be as small and light as possible, paying little attention to set uniformity. This particular lens set has different sized front diameters, different lengths, and dissimilar ungeared focus/iris ring placement.

    When a lens is changed, the 1st AC will likely have to adjust the mattebox placement on the rails, exchange the bellows ring/back plate/doughnut, slightly adjust the follow focus, and require a greater re-balance on steadicam. This is not a big deal, as it’s simply more work for the AC, but it can cost time over the course of a day. If lens changes are often, this can add up quite quickly, especially in on bigger films.

    If this wasn’t enough, many wonderful photography lenses no longer have an aperture ring! Manufacturers have moved the aperture ring from a physical and tactical ring on the lens to an electronic and internal function. For many lenses, the photographer must now use the camera to communicate with the lens and control the aperture electronically. On a cinema camera this immediately disqualifies the lens for use on most digital cinema cameras, as many do not have the means to communicate with a lens electronically. There are systems such as the Birger mount, which address some of these issues and does so quite well. If using internal aperture photography lenses on a cinema camera, this adapter seems to be the only sane option.


    Where is the aperture ring?!

    Focus Barrel Rotation & Distance Witness Markings
    A photographer does not need to worry about pulling focus smoothly or tracking a subject accurately at all times. A photographer must quickly find his subject and snap the photo. He can freely focus in front and behind the subject, narrowing in his focus. His hand is on the barrel and his eye through the lens. He cannot see the lens markings on the barrel, nor does he need to. He finds focus by eye and releases the shutter on an intuitive moment. The cinematographer cannot do this. Maybe if shooting docu-style, this can be a semi-acceptable method of focusing, but for all general purposes, one does not want to call attention to the camera, and focus hunting during a shot is an effective way of doing so. The cinematographer must accurately and discretely use focus to manipulate and direct the viewers eye. The camera assistant must follow the performances of the actor and/or the movement of the camera to keep the subject in focus. He cannot hunt for focus during a shot, and thus needs assistance from the lens in order to help him accurately track his target. This assistance comes in the form of many accurate witness markings on the barrel.

    Photography lenses typically have short focus throws. One can go from close to infinity focus in a simple twist of the wrist. This is helpful when needing to focus quickly on a moments notice, as many field photographers do. However, short focus throws make it difficult to gently track a subject and increases the possibility of overshooting a target. The focus distance markings on a photography lens are often few in number, only generally accurate, and are without actual witness mark lines.

    Modern cine lenses typically have a 300*+ barrel rotation. Cinema lenses are usually larger in size (for optical reasons) thus tend to have a long 300*+ rotation (300* rotation on a tiny lens can be less travel than a smaller rotation on a bigger girth lens). On high quality cinema lenses, each lens is custom engraved to ensure focus witness marks are as accurate as possible. Modern cinema lenses also have two focus scales, one for each side, so the camera assistant does not have to flip the lens in order to pull from the other side of the camera.

    Build Materials
    It can be argued whether photography or cinematography conditions are the hardest on equipment, (it’s cinematography btw) but there is little argument that cinema lenses are typically better built. Cinema lenses are built for the most rigorous of production demands. They are made from machined metal and are designed to operate from sub freezing temperatures to dangerously hot climates. They can be easily serviced, repaired, and modified. The most typical of cinema lens mounts, the PL and PV mount, are amongst the most strong, sturdy and temperature resistant designs.


    Cooke S4 lenses are made from machined anodized aluminum built to operate in conditions
    from -13° to 131° fahrenheit. They are not threaded lens barrels, but instead use a cam system,
    which eliminates the need for lubrication, such as grease.

    Linear Iris in T-stops
    Cinema lenses do not have ‘clicked’ iris rings like many photography lenses, thus one can set the aperture to land at any value between stops. Most modern PL lenses have linear iris rings, with every third of a stop marked. Because cinema lenses are in T-stops, achieving precise and matched exposures with different lenses is as easy as setting the iris ring. Photography lenses, often have clicked iris rings, meaning they must settle on one stop or another. Trying to split a stop will result in the lens likely trying to settle one way or another. If the photography lens does not have a clicked aperture, it will likely be rated in f/stops and without sub-stop markings.

    T-stops Vs F-stops
    Cinema lenses are rated in t-stops, ‘t’ for ‘transmission’, instead of the familiar f-stops found on photography lenses. T-stops are values which represent the true amount of light passing through the lens. Each lens is tested and marked for their T-stop values. An F-stop is simply a formula. It calculates the amount of light that should pass through a lens based on the focal length divided by the entrance pupil. Thus it’s decently accurate except for one thing… it does not take into account the light lost from passing through the glass elements inside the lens! Thus there is always a varying degree of light loss from one lens to another. With F-stop lenses you are always playing within a margin of error.

    Matching Maximum Aperture & Iris Assembly
    Cinema lens sets are designed and built to have matching maximum apertures. This feature isn’t as important as it is helpful, but if a lens set does not have matching maximum apertures, it is the responsibility of the cinematographer to work within the least common denominator among his lens set, or he will find himself switching to a lens that cannot support the working exposure he has already set with his lights. However, the iris assembly is different and arguably more important to the image. When shooting semi-stopped down, on a long lens, and with shallow depth of field, the shape of the iris aperture can be defined in the out of focus elements commonly referred to as lens bokeh. Lenses with matching iris assemblies will provide matching out of focus bokeh shapes. Cooke S4’s and Cooke Panchro/i’s use the same iris assembly design, thus if you were to use them together, they would not only be color matched, but would produce the exact same bokeh renderings at matched apertures. Having a lens set where one lens has a triangular iris assembly, another hexagonal, another octagonal, and another with 12 blades, will result in very different bokeh shapes. If consistency is the goal, this could prove problematic.

    Lens Breathing
    When one changes the focus of a lens, the optical elements inside shift in concert to bend the incoming light from the corresponding distance to a focal point upon the sensor. When the optical elements inside the lens reposition themselves during the focus rack, they can slightly alter the field of view of a lens, which will appear similar to a very slow and mild zoom. This is called lens breathing. In photography, breathing is not important what-so-ever. Besides changing the composition by arguably negligible amounts, breathing is not seen in the image. To eliminate breathing, the lens design must be changed to account for the optical effect, thus eliminating breathing is not a priority of photography lens manufacturers.

    In cinema, tracking focus within a shot, or racking focus from one subject to another is a very common practice, thus cinema lenses take great strides to eliminate breathing. Not long ago, to eliminate breathing all together, Zeiss created a Dual-Floating Element design for their Master Primes. This design will be recognized at the 2012 Oscars with an Academy Award for Scientific and Technical Achievement.

    Barrel Extension
    As explained with lens breathing, when a lens changes focus or zooms, the optical elements inside adjust and shift. When designing lenses, it is often easier to allow the lens barrel to extend forward, in order to accommodate the shifting elements. Many photography lenses, when focused or zoomed, extend their barrel forward as the optical elements shift. Because cinema lenses have connected follow focus gears and a mattebox, telescoping lens barrels are not ideal, thus cinema lens designs provide for internal realignment. All shifting and repositioning of optical elements happen silently and unnoticeable inside of the lens housing. Everything remains as is.

    Barrel telescoping can be from zooming or focusing. Typically barrel telescoping is worse from zooming, however poorly designed prime lenses can exhibit troublesome barrel telescoping when focusing a great distance across the barrel. Typically the issues arise when the lens pushes against the mattebox or the geared focus ring falls off the follow focus.



    Despite lens hoods being added, one can see the telescoping nature of some photography zooms.
    (images from www.the-digital-picture.com)

    Consistent focus and exposure throughout zoom range
    Cinema zooms almost always carry exposure from one end of the zoom to the other. As an example, take the legendary Angenieux Optimo 12x zoom. It is a perfect T/2.8 from 24mm all the way to 290mm. Coupled with the other impressive optical and mechanical features of this lens, it’s no surprise the thing is the size of a military shell. There are many photography zooms which hold maximum exposure throughout the zoom range, but there are photography zooms which forsake this feature in order to accommodate lens design within a small/light housing and low price. Yuck.


    Angenieux 24-290mm T/2.8 Cine Zoom

    Page Three: Mechanical Requirements
    At the end of the day, a wonderful film can be made on photography lenses or cinema lenses. However, because these two mediums are very different in nature and thus the needs of photographers and cinematographers are very different, using photography lenses for cinema purposes is simply adding possible issues and concerns to an already full plate.

    The same goes for using cinema lenses to take photographs. Using a Master Prime to take a photograph would be equally ridiculous. First of all, the lens is 8″ long and weighs about 5lbs. Additionally, handheld photography is not the same as handheld cinematography. One has the luxury of taking the weight on the shoulder… the other is all taken to the wrist. Now imagine having to carry several of these lenses around for a photo-journalism assignment. Not quite appropriate for the context of use. Focusing quickly would require multiple twists of the lens barrel, and likely lost time trying to reel in the focus, perhaps missing the spontaneous moment of the photo.

    Thus, just as photography, there are types of videography that also may not benefit from cinema lenses. If shooting a documentary, wedding, or event videography that involves long hours of handheld shooting in spontaneous/unpredictable environments, perhaps a very lightweight photography zoom might be a more appropriate tool despite some shortcomings.

    The design points described in this writing are the ideal design points of a modern day cinema lens set. However, not all cinema lens sets contain all of these attributes. Vintage cinema lenses and new lower cost cinema lens sets do not attain all of the above. Just as that is true, the same goes for photography lenses. There are photography lens exceptions to where some lenses exhibit attributes of cinema lenses. For instance, Zeiss ZM’s have f/stop markings for 1/3 stops on the barrel.


    Zeiss 15mm f/2.8 ZM (Leica Mount) with 1/3 stop mapped f/stop scale

    Shoot a film with the best optics available to the production. Learn the strengths and weaknesses of that lens set and go about doing what is necessary to utilize those strengths and minimize the weaknesses. Cinema lenses simply allow for less weaknesses and more strengths, leaving the burdened mind of the cinematographer to other things. It’s a luxury well worth having.

  • s 9:50 PM on 130215 Permalink | Reply
    Tags: , , , ,   

    Camera : Canon vs Nikon 

    Warning: preg_match_all(): Compilation failed: invalid range in character class at offset 7 in /nfs/c01/h08/mnt/31572/domains/book.kmov.org/html/wp-content/themes/p2/inc/mentions.php on line 77

    from http://kenrockwell.com

    I’m going to to on and on below about personal experience, so feel free to skip ahead to the real differences between Nikon and Canon.Nikon and Canon are as good as each other. Each are multi-billion dollar optical companies who have been making some of the world’s best optics for numerous consumer, military and industrial applications for decades and decades and decades.
    Each makes lenses as parts of multi-million-dollar steppers used in making electronic chips with more precision anything needed for photography, and each make other optics that sell for hundreds of thousands of dollars in other applications. They each make our cameras and lenses out of the same stuff from which they create these other products.
    I don’t extend this same awe towards discount lensmakers, but I do have this respect for Nikon and Canon and Pentax and LEICAand Fuji and Zeiss who’ve been making much more than cameras for longer than I’ve been alive. I do have a hat off toTokina, who are related to Hoya, who are as far as I know the biggest maker of optical glass on the planet, and whose glass is found in parts of everyone’s lenses.
    Did you know that Nikon is one of the world’s leading makers of professional laboratory microscopes, often beating out Zeiss and Leitz? Nikon also makes the million-dollar lenses and mechanical steppers used in semiconductor manufacture. They have a 37% market share. These lenses and mechanics resolve at 45 nanometers, or less than one-tenth of a wavelength of visible light? That’s over 10,000 lines per millimeter! See Nikon Precision.
    Canon may make their own ICs and image sensors, but for all we know, Canon may use Nikon lenses and steppers to do it! Probably not: Canon also makes steppers and semiconductor photolithography equipment, with a 20% market share. (Thanks to Bates Marshall for those figures.)
    Canon also makes gigantic lenses with 100x zoom ratios for television and lenses for Hollywood motion picture cameras! These sell for six figures.
    Making $20,000, $2,000 or $200 lenses for either Canon or Nikon is child’s play. Their big stuff sells in the $200,000 to $2,000,000 range. We photographers get to benefit from all of it.
    Nikon and Canon are optical companies, not camera, electronic or software companies. It’s sad to see people buy good Nikon or Canon cameras and then put off-brand lenses on them.
    Nikon and Canon are different, but just as good. Anyone who tries to tell you that one or the other is garbage isn’t paying attention, and most likely doesn’t have the other to sell you. Nikon and Canon compete so heavily against each other that if one really were better or worse they would have gone out of business long ago.
    I prefer Nikon DSLRs, and Canon Compacts. Many other people prefer Canon DSLRs and Nikon Coolpix compacts; we’re all different.
    Year to year one usually has an edge on the other. They tend to leapfrog each other back and forth, slowly. LEICA was king from the 1930s through 1950s, Nikon took over from the 1960s through 1980s, Canon was the top pro SLR in the 1990s and 2000s, and as of the Nikon D3 of 2007, Canon and Nikon now run neck-and-neck in the pro market, with Nikon pulling ahead again.
    I shot Minolta from 1973-1983, and have been shooting Nikon since 1983. Shooting for a living, I also got Canon and LEICA systems back in the 2000s, and today in 2012, I shoot all three systems depending on which is best for what I need to shoot. I also got a Fuji X100 in 2011 which I use for my family photosbecause it’s better than any SLR or LEICA.
    Contrary to some beliefs, I get paid nothing by and have no allegiance to Nikon or Canon or Nikon or any other camera maker, other than having used their great products for many decades depending on the brand.
    Shooting all these systems for a living every day makes one very familiar with what each does well — or not, so let me share how they really compare from actual long-term experience
    I spend a lot of time covering the background and details before I summarize the real differences. Feel free to skip ahead if you’re in a rush to spend a few thousand dollars quickly.

    Most Nikon SLR camera and lenses made since 1959 are compatible with each other.
    Any two items from about the same 10-20 year technology window will work well with each other.
    The Nikon system is so renowned for its multi-decade interoperability that I have aNikon System Compatibility page discussing it.

    On the other hand, Canon flushed compatibility down the toilet in 1987 when it created a new and completely incompatible system of AF cameras and lenses called EOS. Nothing works together before or after the great autofocus divide of 1987.
    To Canon’s credit, the new EOS system is a better design than the old Nikon mount, but old Canon FD manual focus lenses, once promoted as “timeless” by Canon, areuseless on any modern Canon camera.
    Contrast this to Nikon, where just about every lens ever made works swell, with few limitations, on every brand new camera.
    While I shoot both of the Canon systems (FD and today’s EOS systems), most people are only concerned with Canon cameras today, and that’s where the good news starts.
    Because Canon wiped the slate clean and created a completely new camera system for autofocus in 1987, every camera and lens Canon has made from 1987 through today is completely 100% compatible with everything else made since 1987. Every Canon EF lens works perfectly with every Canon EOS 35mm or digital camera ever made. Their oldest EF lenses work perfectly on the newest EOS digital cameras, and the newest EF lenses work perfectly on very first EOS650 camera of 1987. (Flash is a different story, and the smaller EF-s lenses wont’ work on full frame cameras.)
    Nikon can’t come close to this; many Nikon autofocus lenses still sold new today use old technology that won’t autofocus on some of Nikon’s newest cameras!
    Canon cameras can use Nikon lenses, but Nikon cameras can’t use Canon lenses.

    One big difference between Nikon and Canon is delivery of new products.
    A good thing about Nikon is that they announce products a couple of months before they become available. You never feel like an idiot having bought a camera that goes obsolete the next day. Canon, on the other hand, usually has cameras available when they announce them, so you can get caught off guard.
    Unfortunately Nikon does this to a fault. It’s good to announce something a couple of months before it comes out, but bad to take orders and not be able to deliver.
    Nikon has been doing this at least since 2000. They announced the 80-400mm VRin January, 2000. It was a year and a half later before you could buy them easily!
    Nikon Announced the D100 in February of 2002 and it was a year until you could get them easily. I had bought a D1H the week before, but didn’t worry even though I would have preferred the D100, because I didn’t have 9 months to wait for one.
    Nikon announced the 12-24mm in February 2003 and took a year until they were easy to find.
    Nikon announced the D70 in February of 2004. That only took a couple of months to get.
    The 18-200mm VR was announced on November 1st, 2005, and Nikon had them on back-order until 2007!
    Canon usually ships its hot new products, while Nikon often strings us out for long periods of time.
    LEICA is a different story. LEICA never makes anything; their new products are never available. You always have to order them and be patient.

    You have to know the history behind this Nikon versus Canon race to understand it. Here’s my personal experience, which spans most of five or six decades.

    Early 1900s
    Canon was founded in 1934 to sell cheap knock-offs of the new LEICA camera. It was sold with a lens made by Nikon, since Nikon has been making lenses for military applications forever, and Canon had just started in a garage.
    Canon started by making consumer products, and branched out into industrial equipment much later.
    Nikon had been making military instruments for mass destruction long before World War II. Nikon made bomb sights used to murder Americans in the Japanese terrorist attacks on Pearl Harbor in 1941, as well as huge rangefinders for battleship and field artillery in WW II.
    Nikon made no cameras before WW II. After Nikon’s warmongering activities were closed-down after WWII, Nikon had to figure out what to do for peaceful purposes. Their idea was to make rangefinder cameras for consumers in the late 1940s, and then SLRs in 1959.
    Nikon started out making military products and was forced into making consumer products after Japan lost WW II.
    Canon and Nikon have been competing with each other since WWII.

    1960s and 1970s
    My first 35mm SLR camera, bought when I was 11 years old in 1973, was a Minolta. You can see it and its photo quality on my Night Photography page. I upgraded to my dream camera, the Minolta SR-T-102, around 1974.
    Nikon was exclusively an expensive camera for professionals, and Canon made cameras popular with consumers. They didn’t compete much, although as the decade wore on, Nikon started making cheaper cameras and Canon made some more expensive pro cameras that pros wouldn’t buy.

    In 1980 I wanted all my lenses to use filters the same size so I could change them easily while photographing from my mom’s small plane. Minolta drove me nuts by using a different filter size every time they restyled their lenses. I bought a Nikon F2AS manual camera and a slew of manual focus lenses. I sold the Minolta gear because I thought Nikon was better.
    In 1980 Nikon was the undisputed king of pro 35mm cameras. For the same price as Canon I got what I thought was much better mechanical quality and better access to rental gear. I also thought it was cool to have the same camera used by every other journalist.
    I was still too stupid to realize that 1.) people shooting landscapes used 4 x 5 cameras, not 35mm, and that 2.) All cameras in the same format perform the same.

    LEICA invented autofocus, and knowing that its customers know how to focus, sold the patent to Minolta, who introduced the world’s first SLR in 1985. A few years later Canon and Nikon had them, too. Professionals laughed at the idea — they knew how to focus, and autofocus was still to slow for sports. Even if AF was fast, sports shooters know where the ball is going before it gets there, which cameras don’t.
    Nikon AF cameras and lenses were completely compatible with older lenses and cameras. This was good because pros all had many thousands of dollars invested in their manual lenses. It was a no-brainer to buy a new Nikon AF camera since it was compatible with everything. New AF lenses were compatible with manual focus cameras. They still are! Nikon solidified the reason to shoot Nikon as a pro: no one had to start out from scratch again. Going to AF in Nikon was easy.
    Nikon AF cameras had motors in the body to focus the lenses mechanically through a small screw in the lens mount. They still do.
    Canon designed their AF system from scratch, and used a completely new and incompatible lens mount. The lenses each had their own motors inside them. If you shot Canon you had to throw away all your lenses and bodies and start from scratch. Not good! To go to Canon AF you had to rebuy your entire system with new AF gear.

    Pros eventually started using the AF cameras around 1990 and liked them. One teensy-weensy problem around was that Nikon AF cameras couldn’t focus fast enough for sports. The Canon cameras worked great. Pros who shot sports dumped their Nikon gear and moved to Canon in droves. Sports shooters still predominantly use Canon for this reason. I was kidding about slow AF being a teeny problem: it’s why Nikon lost it’s twenty-year lock on the pro journalism market and has never won it back!
    Unlike 1980, in the 1990s Canon cameras evolved to be as professional as Nikon. They have competed neck and neck for the same customers ever since.
    Nikon’s AF speed is as good as Canon today, but no pro is going to sell all his lenses and cameras and start from scratch without a very good reason.
    As a pro you own a lot of gear, all bought at different times. It all needs to work together as a system. Amateurs buy bodies and lenses together, while pros add and delete each body and lens from their systems as it makes sense. Except in the case of total fire or theft, you never get the chance to start over from scratch.
    Better AF performance was why sports pros left Nikon in the 1990s. There’s never been anything compelling enough since then to get them all to switch back, so it’s been a slow road back for Nikon. That’s why you see so many white lenses at sports events, in addition to the fact that Canon Pro Services loans them all out. Remember, sporting is only part of the photo picture. Landscape photographers have been using 4×5″ film for over 100 years and don’t show any signs of changing soon. The best ones rarely use Canon or Nikon.

    Nikon invents the professional D1, the world’s first practical digital SLR. It was $5,000 and had 2.7MP. Nikon became the leader in professional digital.
    I bought my first AF Nikon, an F100, and liked it so much I eventually wound up buying all new AF equipment anyway.

    Canon introduced their own first DSLR, the consumer D30. It had the same image quality as Nikon’s metal D1, but for only $3,000 in plastic. It also had 3MP.

    Canon announces their first professional DSLR, the EOS-1D on 25 September 2001. Canon moves ahead of Nikon in the digital arena.

    2002 – 2004
    Nikon doesn’t introduce much, while Canon is very busy. Every time Nikon announces a new DSLR, Canon outdoes them the next week. This goes on through 2012!

    2005 – 2006
    Nikon’s D70 was my favorite over the better-built Canon 20D. I preferred the D70’s faster operation, specifically, the D70’s immediate access to white balance trims, needed for every shot, over having to go into menus on the 20D.
    In 2006 Canon tweaked the firmware in the 20D and called it a 30D, which I find uncompetitive with the D200. What were they thinking? Nikon leapfrogged them with the D200. The D200 eclipsed anything Canon had done, including the Canon5D which cost three times as much.
    I had always admired the Canon 28 – 135 IS lens. Nikon had nothing similar until Nikon introduced the spectacular 18-200 VR for digital, which eclipses the earlier Canon 28 – 135.
    In 2005, Canon introduced the Canon 5D, the world’s first full-frame consumer DSLR. The 5D has technical performance better than any consumer full-frame camera from Nikon until 2012’s Nikon D800.

    For the first time ever, Nikon introduces the Nikon D800 which has more resolution than any Canon DSLR. Nikon finally regains it’s leadership status, lost since Canon trumped Nikon’s 1999 D1 with Canon’s 2000 EOS-1D.

    My Personal Preferences
    Nikon and Canon all give the same quality images within the same price class. See my Noise and Resolution comparison. These differences are so small I have to strain to see them with test charts. In the dynamics of the real world they are invisible. I ran those tests, and discovered that whatever differences entertain chat-room participants don’t exist.
    As you ought to know, I’m just a guy who loves to take pictures and today just happens to have literally millions of people reading this site, which are my personal opinions, each month. I don’t get any free gear, money, sponsorships, hats or anything from any camera companies, in spite of what people may think.

    I prefer Canon point-and-shoots. I love their color rendition, and I can’t for the life of me figure out the menus of the Nikon Coolpix cameras.


    The biggest reason pros shoot Nikon, or switch from Canon to Nikon, is that Nikon’s flash exposure control gets perfect flash exposure every time, while a core incompetency of Canon is that Canon DSLRs rarely get consistently good flash exposure.
    Sure, you can get a good shot on a Canon with flash, but it often will take a lot of fiddling, while even the cheapest Nikon DSLR usually gets it right on the first shot. As a pro, this is critical; Nikon’s flash technology has some secret sauce or patents that Canon just can’t match.
    My Nikons give me far more flash sync options. They are well labeled and easy to set without menus. Canon hides them inside other modes deep inside menus.
    For instance, the important Rear Curtain option is hidden in the 30D’s Custom Function 15, while even a cheap Nikon D50 has its own flash sync button.
    Slow sync isn’t selectable separately on these Canons. Program mode always uses a faster speed of about 1/60 as its lower limit. Tv, Av or M modes use slow sync by default. See p.92 of Canon’s 20D manual for details.
    This is too bad: I always shoot my Nikons in Program, and set the slowest flash shutter speed to whatever I want, usually 1/30 or 1/15 to let in enough ambient light. This is easy to change on Nikon, and almost fixed in stone on these Canons.
    I have no idea how to set manual flash mode on the Canons, while on the Nikons it’seasy to set up wireless remote flash control.
    My Nikon DSLRs let me know if the flash may have underexposed (the bolt in the finder blinks rapidly). I’ve never seen that on the Canons. The Nikon flash units even tell me, in stops, by how much they have underexposed.

    C1 C2 C3 Modes
    Most Canons have “C” modes on their control dials. Each of these is a complete memory for everything about the camera. Every time you select that position, everything about the camera is recalled from when you saved it!
    Nikons, except for the D7000, have no easily recalled total-camera-state recall functions. Every time you want to shoot anything different on a Nikon, you have to reset many different things in many different menus. Nikons often have “settings banks,” but there are many of them, and they still don’t save and recall everything, so they don’t help much. Even if they did, there is no way to lock them; as you change settings, there is no way to recall what had been set before, so they are useless.
    With most Canons, its fast and easy to get back to all the settings you want, and if you have more than one C on your dial, I set C1 for my landscape, and C2 for my people shots.
    Every time I wake up my Canon in a C mode, it resets to all my personal favorite settings, which is far better than Nikon’s one factory-default green-button reset that neither resets everything, and certainly doesn’t reset to my settings.

    Smart (green-button) Reset
    I always use the Smart Reset (two-green-button reset) of my Nikon DSLRs. They reset all the shot-to-shot stuff, like WB and ISO and selected AF sensor and exposure compensations and image and file sizes, and leave alone the rarely set items like file numbering, custom functions and beeps.
    If I don’t use Nikon’s green-reset of Canon’s “C” modes, I’ll often have left the camera at a deep tungsten white balance and ISO 1,600, which of course ruins all shots made that way until I notice and reset them all by hand.
    With my Nikons I hold the two green buttons and all is back at normal.

    Playback Held Hostage
    My biggest complaint about all my Canons, DSLR and compact, is that they lock ne out of any playback controls, like zooming, until after I’ve pressed the PLAY button. With Nikon’s, as soon as my photo shows on the back after I shot it, I have full access to zooming and selecting other images. (I usually have to enable this in Nikon’s menu.)
    Nikons play fast. Canon DSLRs take time when you try to display pages of 9 playback images and flip though them.

    Seven versus Eight-bladed diaphragms
    Nikon always uses superior 7- or 9-bladed lens diaphragms, while another core incompetency of Canon is often using 6-or 8-bladed diaphragms.
    Odd-numbers of diaphragm blades lead to superior sunstars (14- or 18-points from Nikon vs. 6- or 8- points from Canon) and less disruptive shapes of out-of-focus highlight blobs (bokeh), septagons or nonagons from Nikon versus obnoxious hexagons or octagons from Canon. When we see hexagons or octagons, we thing snowflakes or stop signs, while septagons or nonagons are so low-key that you probably don’t even recognize the names of the shapes!

    Control Sensibilities
    On my Nikons, one dial always sets aperture and the other always sets the shutter. On the Canons, what dial does what depends on your mode. That drives me crazy – I need to have the same dial change the same thing every time I spin it, regardless of the shooting mode.
    Nikon turns off the exposure compensation indication if you haven’t set it. Canon leaves it on, even in the finder, even if it’s set at zero.
    I prefer Nikon’s easy-to-find-in-the-dark LCD illuminator button. It’s concentric with the shutter; just twist. On the Canons you need to feel around for a dedicated button.
    When you hit the LCD illuminator, either on camera or on flash, everything lights up. On a Canon Rebel XT and EX-550, each button only lights one of them!

    Auto ISO
    Nikon has more flexibility in programming Auto ISO.

    I get more consistent results on my Nikons. It’s not unusual to get an unfocused image with my Canons, with the camera’s AF confirmation light lit on an unmoving subject.
    My Canons tend to be a little faster with cheap lenses, and about the same with the expensive ones. In other words, Nikon lets the AF of their cheap lenses ($80 – 500) get slower, both both brands of pro lenses (c. $1,500 range) are equally fast.

    Locking Flash Shoe
    Nikons for about 15 years have had a pin in the flash shoe which bolts the flash solidly into the hot shoe. It will never slide a little out and lose its electrical connection. It flicks with a lever.
    Canon is still back in the 1970s. The 550EX flash only has a plastic screw-down ring on its bottom, which doesn’t work, is a pain to loosen when needed, and loosens itself when you don’t want it to. This results in the flash misfiring, since only a small amount of slippage is enough to disconnect the small electrical pins.

    AF Assist Illuminators
    Canon got all the sports shooter business in the 1990s because of their superior AF system. Today Nikon is fine, but pros who moved have no need to return. Pros have a huge investment in gear; it’s not just one camera. Even I have Nikon gear bought over 25 years ago that I still use today.
    Something very annoying about the Canon AF system has been their attempt to use the on-camera flash for low-light AF assist. I kid you not: Canon cameras fire off multiple extended bursts of the flash to light the subject for focusing in the dark. Every time this happens we say “What the heck was that???” and try to turn it off. This only happens in dark areas where the AF system can’t see enough, and of course those are the conditions under which the flash going off in people’s faces is the most annoying. Egad.

    The Freedom Lens: Nikon’s 18-200mm VR/IS (what is Vibration Reduction?)
    Canon, and no one, makes anything that can do what the life-changing Nikon 18-200mm VR does. There are loads of off-brand 18-200mm lenses, but they have no VR (critical at 200mm) and only have primitive focus control with no instant manual override.
    Canon’s 18-200 IS is inferior: it demands you move a switch to get between auto and manual focus, while on the Nikon 18-200 VR, all you do is grab the focus ring.
    Sigma announced an 18-200mm OS (stabilized) lens, but it’s only f/6.3 (not rated to work well for AF, which needs at least f/5.6) and I suspect it has primitive focus, not HSM/AFS/USM. We’ll see, and I avoid off brand lenses anyway. As I explained, the whole point of a Canon or Nikon camera is to use the superior lenses made by either, both of which are very serious optical companies, unlike the off brands.

    Viewfinder Grids
    Most digital Nikons have magic, selectable viewfinder grids, free!
    The Canon DSLRs don’t. You can buy an optional screen for the 5D, and manually jam it in the camera’s viewfinder.
    Most point and shoots from Canon and Casio have these, too, just not the Canon DSLRs.
    I use these grids to help me get level photos. It’s one of the first things I turn on when I get a new camera.

    Data Embedding
    My Nikons let me embed my ©, name and phone number into the EXIF data of every one of the 75,000 shots I’ve made, no computer required.
    I haven’t seen that yet on the Canons, unless you dick with software in your computer. Pros don’t have time for computers, we have photos and money to make.

    Automatic Zone System Exposure and Development
    The Nikons have an AUTO CONTRAST mode by default (called Tone Compensation under Optimize Image) which uses the Zone System to optimize the camera’s contrast to the subject. It was awful in the D1H, and in the D70, D80 and D200 it works great to match conditions. The Canons have no such mode: you have to set them manually. That said, in harsh light sometimes my D200 goes a little too flat, and the Canons always look great anyway. The Canons also make it easy to set these, by using a custom function to have their SET buttons call up instant selection of preset image adjustments, called Parameters on some Canons and “Image Styles” on others.

    AF Assist Lights
    Nikon has annoying little lamps on the camera body. Canon doesn’t, and instead fires the flash with an ultra-annoying series of continuous bursts. Boy, if having the flash fire a zillion times doesn’t get you thrown out of a venue, nothing will.
    Canon’s self-timer lights don’t work as the AF assist lights as they do on Nikon.
    To Canon’s credit, their AF system works great so long as you have at least a little light; just forget about it in darkness.


    They are about the same size, clarity and brightness, depending on which you compare. They all have gesticulatic dioptometricization. The Rebels are about the same size as the D50/70, the 20D/30D are a bit bigger, the D80/D200 much bigger, and I presume the 5D the Mother of them all.

    I find the in-finder data a little bit sparser in Canon than in my Nikons. I also found the Canon’s digital thinner and harder to see than in my Nikon DSLRs.
    All of them do a great job of automatically varying the brightness of the display to match ambient conditions.

    Sensor Sizes
    Canon curses us with three incompatible sensor sizes. For two of the sizes, 1x as in the 5D and 1DS Mk II, we have to use the 16-35, 17-40 and 15mm fisheye lenses, and on the 1.6x consumer cameras (20D, 30D, Rebel) we have no fisheye, but do have the excellent 10-22mm. The pros using the 1.3x (1D) cameras are screwed: the pros who could make the best use of wide angle lenses in news reporting just don’t have them. There are no fisheyes and no ultrawide lenses for the 1.3x cameras.
    Why do I say cursed? Because as I dig through the Canon system to report on it, I have to make three sets of tables for each lens. Each lens performs differently on each format camera. Corner sharpness? The corners are in three different places!
    To use the Canon system, I have to buy different lenses for each camera. I bought a 10-22mm for the XTi and its brethren, and have a 16-35 and 17-40mm on loan to figure out which one I need to do the same thing on the 5D. Of course my pain is your gain: I’ll be doing a knock-down, drag-out donnybrook between them (apologies to Pop Photo cover copywriters)
    I love wides. Telephotos aren’t as weird, although the 18-55mm, 17-85mm, 17-55mm and I forget what else only work on the 1.6x cameras.

    Data Transfer
    Both are as fast. The newer ones are all fast enough to eliminate card readers.
    My Nikons show up as hard drives on my computers. I drag and drop files either way, no software required. I create folders in-camera, and download sorted photos directly from my Nikons! Data from the Canon cameras can only be read via software.


    Nikons have a “?” button for explaining most of the menu functions. Canons don’t.

    Nikon USA’s free live tech help line, (800) NIKON-UX, is open all the time, 24/7/365.

    Canon USA’s free help line, (800) OK-CANON, lets its very good people go home late and on Sundays.

    Both help lines are very good. I’ve always gotten someone who knows the answer on the first try.

    Shots Remaining
    This is even.
    The Canons are stupid and stop at 999, while Nikons are smart enough to show “2.7k” if they need to. They each only have three digits with which to display this.
    My Nikons are defective in design: they underestimate, which is pretty funny, since the Canons vary the size of the file to fit the image, and Nikons tend to make the same size files, making this easier. As an example, my D80 says “516” shots for Normal JPG LARGE images on a 2 GB card. I actually get about 800 shots on those.

    Trick Custom Image Settings and Tweaks
    Nikon makes you buy their buggy $100 Nikon Capture software to create and load crazy curves and settings into your camera. You need to buy this to tweak curves, colors and contrasts other than what you can do in the menus.
    Canon makes this available for free here, and includes all sorts of fun presets, too.

    JPG File Size and Quality Optimization
    Busy, detailed, contrasty subjects need more JPG bits to look good than do images with flat backgrounds, low contrasts and blank spaces.
    Canon does a better job here. Canon’s JPG file sizes vary to maintain constant quality. It’s not unusual to see a fat file three times the size of a small one, with the only difference being the subject. Nikons are stupider and tend to keep JPG files sizes very similar, wasting bits when not needed and lowering quality when they are.
    I prefer Canon. Even the Nikon D2Xs and D200, which allow a new choice to let the JPGs files vary size, don’t work as well as Canons have for years by default.

    Clock Setting
    I prefer my Nikons, which let me check the time to the second and change time zones without altering my to-the-second calibration. The Nikons let you set the clock to any random second, not just at the minute as with almost every other digital clock.
    The Canons only read to the nearest minute, and don’t even recognize time zones. I lose my exact setting, since I have to reset it from scratch when changing time zones.
    The latest Nikons really did a good job and have an easy-to-use world map and time zone calculator and display. The Nikons (my D80 in this case) sadly hide the clock setting under the menu item MENU > SETUP > World Time > Date.

    Depth-of-Field Preview Button
    Canon’s buttons work instantly and silently. I wish everything worked this well.
    Unfortunately, Canon only in 2012 is starting to out this button on the correct side of the camera. FOr decades, Canon has put this button is on the wrong side of the camera so it takes a second hand to use.
    Nikon’s buttons are bogus: they clatter all around as if the camera took a picture. This is annoying, but was handy back in film days when I could hit it to satisfy people pestering me to take their pictures. Today, at least Nikon always has these buttons on the correct side of the camera.

    Front Lens Caps
    Canon’s caps are pretty flimsy. They only have tabs for release from the side, not the front.
    Nikon has much, much better and beefier caps.

    Color and Tone
    Nikon and Canon each use different “secret sauce” that defines the colors and tones captured by their cameras, especially when you start adjusting the color, contrast, saturation and the zillion other controls on cameras today.
    Images will look different from either brand of camera. Most Nikons and most Canons’ match other cameras of the same brand when set alike, but images shot on Nikons most certainly won’t match the colors, highlights, shadows and grays of the other.
    In this case, there is no right and wrong. Photography is an art, and in art, it’s about what looks best to you, the artist.
    Look carefully at the color rendition you get from either camera, and shoot what you prefer.
    Auto White Balance (AWB) works very differently in different cameras. If you shoot in AWB as I do, one brand or the other may work better under the unique conditions under which you shoot. Pay attention and you’ll probably prefer one over the other.

  • s 9:49 PM on 130215 Permalink | Reply
    Tags: 60D, , , ,   

    Canon 60D 

    Warning: preg_match_all(): Compilation failed: invalid range in character class at offset 7 in /nfs/c01/h08/mnt/31572/domains/book.kmov.org/html/wp-content/themes/p2/inc/mentions.php on line 77

    Body probably not as rugged as mag-alloy 50DAF assist only works when flash is up, though flash can be forced offAuto-exposure not reliable in very low lightNo in-camera image stabilization (lens based)18-135mm kit lens has noticeable chromatic aberration and geometric distortion; also doesn’t focus very closelyIn-camera distortion and chromatic aberration correction only available in post-capture RAW processingFlash exposures sometimes inconsistentNo PC Sync connector for external strobesNo continuous autofocus in Movie modeAuto and Incandescent white balance leaves tungsten lighting too warmDefault high ISO noise suppression has trouble with low-contrast areas, especially in the red channelSingle-area full AF lag and burst mode slower than 50DImatest high quality dynamic range score not as good as some competitorsNo AF MicroadjustmentNeed to use Mode dial to switch to Movie modeSluggish buffer clearing times

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc